
Penn State Numrel Lunch
February 27h 2003

Cactus: Current Status and Future
Plans

Tom Goodale
goodale@aei-potsdam.mpg.de

What Is Cactus

� Cactus is a framework for developing portable, modular
applications, in particular, although not exclusively, high-
performance simulation codes.

� Cactus is designed to allow experts in different fields to develop
modules based upon their expertise and to leverage off modules
developed by experts in other fields to perform their work, with
minimal knowledge of the internals or operation of the other
modules.

� This enables it to be used in large, geographically dispersed,
collaborations.

� Cactus and the Cactus Computational Toolkit are Open Source
and freely available.

(*) Any Unix-like machine plus Windows

History

� Cactus was first developed in 1997 by Paul Walker, Joan Masso
and others as a continuation of a long line of numerical relativity
codes, such as the NCSA G-code and Paul's Framework.

� Through the first couple of years Cactus became progressively
more modular, allowing modules for different formulations of
Einstein's equations and different physical systems.

� Although in principle Cactus was modular, its history and evolution
had left many dependencies between modules and between the
core and the modules. Cactus 4.0 is a complete redesign of the
core, which moved everything possible out into modules, and put
structures in place to enable modules to enable modules to be far
more independent.

� Cactus 4.0 builds upon the lessons learned in earlier versions, and
incorporates our vision of a modular and hopefully future proof
framework.

Current Users

� Numerical Relativity

�

Used by many groups including:

� AEI(Germany),UNAM (Mexico), Tuebingen(Germany), Southampton (UK),
Sissa(Italy), Valencia (Spain), University of Thessaloniki (Greece), MPA
(Germany), RIKEN (Japan), TAT(Denmark), Penn State (USA), University of
Texas at Austin (USA), University of Texas at Brwosville (USA), LSU (USA),
WashU (USA), University of Pittsburg (USA), University of Arizona (USA),
Washburn (USA), UIB (Spain), University of Maryland (USA), Monash (Australia)

�

Over fifty users on mailing list

�

See http://www.appleswithapples.org

� Climate Modelling

� CFD

�

KISTI

�

DLR looking at flow in turbines

Current Users...

� Astrophysical Hydrodynamics

�

Mike Norman's Zeus code is now in Cactus

� Chemical Reaction

� Bioinformatics

� Plasma Physics

� Quantum Gravity

� ...

� Used by many CS projects ...

�

GridLab

�

GrADS

�

TeraGrid

Support

� Primary development is at the AEI, funded by various CS grants.

� Support consists of:

	

web-pages,

	

mailing lists

	

bug-tracking system

	

help line (cactusmaint),

	

users guide, howtos, ...

� cactusmaint is geographically disperesed between AEI, WashU,
LBL, ...

� Users' and Developers' mailing lists are active and a good source
of information.

Structure

 The source code of Cactus consists of a core part – the “Flesh”
and a set of modules called “thorns”.

 The Flesh is independent of all thorns and after Cactus is
initialised, it generally acts as a utility and service library which the
thorns call to get information or ask for some action to happen.

 Thorns are separate libraries which encapsulate some
functionality. In order to keep a distinction between functionality
and implementation of the functionality, each thorn declares that it
provides a certain “implementation”. Different thorns can provide
the same “implementation”, and thorn dependencies are expressed
in terms of “implementations” rather than explicit references to
thorns, thus allowing the different thorns providing the same
“implementation” to be interchangeable.

Thorn Specification

� The Flesh finds out about thorns by configuration files in each
thorn. These files are converted at compile time into a set of
routines the Flesh can call to find out about thorns.

� There are three such files

�

Scheduling directives

� The flesh incorporates a scheduler which is used to call defined routines from
different thorns in a particular order.

�

Interface definitions

� All variables which are passed between scheduled routines need to be declared.

� Any thorn-provided functions which other thorns call should be declared.

�

Parameter definitions

� The flesh and thorns are controlled by a parameter file; parameters must be
declared along with their allowed values.

Program Flow

Simulation Initialisation

Evolution

Termination

The Driver Layer

 In principle drivers are the only thorns which know anything about
parallelism

 Other thorns access parallelism via an API provided by the flesh

 Underlying parallel layer could be anything from a TCP-socket to
Java RMI. It should be transparent to application thorns.

 Could even be a combination of things.

 Can even run with no parallel layer at all.

 Can pick actual driver to use at runtime - no need to recompile
code to test differences between parallel layers. Can take one
executable and use whatever the best layer for any particular
environment happens to be.

Current Drivers

� There are several drivers available at the moment, both developed by the
cactus team and by the community.

� PUGH

�

a parallel uni-grid driver, which comes as part of the the computational toolkit

� PAGH

�

a parallel AMR driver which uses the GrACE library for grid hierarchy
management

� Carpet
a parallel fixed mesh refinement driver

� SimpleDriver

�

a simple demonstration driver which illustrates driver development

� Discussions and plans to add others, e.g. Paramesh and Chombo as
other drivers.

�

Clear interfaces to follow

Cactus Computational Toolkit

� Core thorns which provide many basic utilities, such as:

�

Boundary conditions

�

I/O methods

�

Reduction and Interpolation operations

�

Coordinate Symmetries

�

Parallel drivers

�

Elliptic solvers

�

Web-based interaction and monitoring interface

�

...

Cactus Computational Toolkit

� CactusBase

�

Boundary, IOUtil, IOBasic,
CartGrid3D, IOASCII, Time,
LocalInterp

� CactusBench

�

BenchADM, BenchIO

 CactusConnect

!

HTTPD HTTPDExtra, Socket

" CactusExamples

CactusElliptic

$

EllBase, EllPETSc, EllSOR, EllTest

% CactusPUGH

&

PUGHInterp, PUGH,
PUGHReduce, PUGHSlab

' CactusPUGHIO

(

IOFlexIO, IOHDF5, IOPanda,
IOStreamedHDF5, IsoSurfacer

) CactusIO

*

IOJpeg

+ CactusUtils

,

NANChecker

- CactusWave

.

IDScalarWave, IDScalarWaveC,
IDScalarWaveCXX,
WaveBinarySource, WaveToyC,
WaveToyCXX, WaveToyF77,
WaveToyF90, WaveToyFreeF90

/ CactusExternal

0

FlexIO, jpeg6b

Current Capabilities: IO

1 Support for IO and checkpointing in
many different formats

2

Basic screen output of norms

3

2-d slices as jpegs.

4

n-d ASCII data suitable for x/y-
graph or gnuplot.

5

n-d data in John Shalf's IEEEIO
format.

6

n-d data in HDF5 format, which
may be written to disk or
streamed to visualisation clients
or other simulations.

7

Output using the Panda software
from UIUC.

Current Capabilities: Grids, Boundaries,
Symmetries, etc

8 Cactus currently supports data on structured meshes. These
meshes can either be unigrid, or can be adapted in either fixed
mesh refinement or adaptively.

9 The grid can be restricted to octants, quadrants or “bitants”.

: The thorns provided with Cactus support many boundary
conditions, e.g. copy, radiative, fixed, etc.

; Periodic boundary conditions have been supported since version 1
(contrary to rumour). There are thorns to support Cartoon
boundaries and Rotational symmetries (in development), and we
are working on making the symmetries completely transparent to
simulation codes.

Current Capabilities: Methods

< Almost all codes in Cactus at the moment are explicit finite
difference codes on structured meshes.

= In principle finite volume or finite element on structured meshes is
possible.

> There is now a generic method-of-lines thorn which makes
developing thorns using such methods very quick and easy.

? We have an interface for elliptic solvers and support for generic
elliptic solver packages such as PETSc as well as a numerical-
relativity-specific multigrid solver written by Bernd Bruegmann.
However our interface is not as generic as it could be, and it may
not be too useful as it stands for solving general implicit problems.

@

A new interface has been proposed in the last couple of weeks which would
apply a similar methodology as is used for boundary conditions for elliptic
equations.

Current Capabilities: Interaction

A The HTTPD thorn provides an interface which allows a web-
browser to connect to a running simulation

B This allows a user to examine the state of the running simulation
and change certain parameters, such as the frequency of Io or the
variables to be output, or in fact any parameter which some thorn
author has declared may be changed during the simulation.

C These capabilities may be extended by any other thorn. E.g. the
HTTPDExtra thorn allows the user to download any file output by
the IO thorns in the Computational toolkit, and even to view two-
dimensional slices as jpegs.

D

There is also a helper-script for web-browsers which allows the appropriate
visualisation tool to be launched when a user requests a file.

Current Capabilities: Visualisation

E The output from the Computational Toolkit IO thorns can be
visualised by many clients, such as: Amira, OpenDX, GnuPlot,
Xgraph, Ygraph, ...

F There is currently work from the climate modelling community to
add IO thorns for the NetCDF format and this will bring in a new set
of possible visualisation clients.

G The IsoSurfacer thorn calculates isosurfaces of a variable in
parallel and may stream the data out to a suitable client.

H We provide one, IsoView, but it is an open format which can be
used by other clients, e.g. Amira.

I Lots of information on web pages, including binaries for various
visualisation tools and HOWTOs for setting these tools up and
using them.

Ongoing development

Much ongoing development work:

J Generic optimisation

K

timing and profiling information

L

Working with NCSA, Intel, LBL, ...

M Associated scripts

N

checkout

O

remote testing

P

...

Q Task farming and parameter searches

R Grid applications

S Describing tensors or other geometric quantities in a generic
manner for grid variables.

Case Study: Framework for Einstein's
Equations

T In the last year we had intensive discussions between various
groups about how best to support various different approaches to
solving Einstein's equations within the Cactus Framework.

U Result was new revised CactusEinstein arrangement which is not
tied to any particular approach.

V The core of this new arrangement is one thorn ADMBase which
defines the basic ADM variables which all thorns operate on or
with, or at least use to communicate with other thorns.

W The ADMBase thorn is the only one required for inter-operability
between different formulations, however there are another four
auxiliary thorns which may be used to enhance the functionality:

X

CoordGuage, SpaceMask, StaticConfomal and ADMCoupling

Einstein: The Auxiliary Thorns

Y All the auxiliary thorns are independent of each other and are
optional to the use of the arrangement

Z CoordGauge

[

This is used to schedule combinations of gauge conditions for the ADM lapse
and shift.

\ SpaceMask

]

This may be used to store and communicate information about any masks
which affect areas of the computation

^ StaticConformal

_

Many simulations involve a particular static conformal factor. This thorn
provides this conformal factor and (optionally) its derivatives.

` ADMCoupling

a

This may be used to share variables between metric evolvers and stress-
energy evolvers (e.g. hydro, scalar-field, e-m field, ...)

Einstein: Other Thorns

b Apart from ADMBase and the auxiliary thorns, the CactusEinstein
arrangement contains a set of thorns which illustrate its use.
These thorns are also used in real production runs.

c

An Einstein metric evolver

d

Initial data for black holes and gravitational waves

e

An apparent horizon finder

f

Gravitational wave extraction

g

Analysis tools to find the Newman-Penrose quantities of a space-time.

h

Various other analysis tools to determine such things as the hamiltonian and
momentum constraints, the Ricci and Riemann tensor components, ...

Future Plans

i Release 4.0 final !

j

Finish the remaining outstanding features such as function aliasing, better
coordinate and symmetry handling, driver interface enhancements, ...

k

Squash bugs.

l

Finish Documentation.

m Then start work on 4.1 (we will use a linux-like release numbering
system from this point).

n We have a fair number of features we'd like to put in in 4.1:

o

More numerical methods

p

Infrastructure enhancements

q

Connection to other frameworks

r Please send us ideas/suggestions too !

More Numerical Methods

s Support unstructured meshes

t

Allow much greater ability to use FE and FVM.

u Better support for “multi-model” - i.e. multi-block, multi-patch, and
multi-domain – simulations.

v

Can be done now, but requires a lot of detailed knowledge of the
infrastructure and for the code to be structured differently.

w

We'd like it to be easy to develop each model separately and then plug them
together.

x Support particle methods such as particle in cell (PIC) and
smoothed particle hydrodynamics (SPH).

y Support for spectral methods.

More Dynamic Infrastructure

z Dynamic loading and unloading of thorns

{

Currently thorns can be either inactive or active, and thorns may only be
activated while the parameter file is being parsed. We'd like to add support
to activate or de-activate at any time, and support for thorns to be
dynamically loadable libraries which would thus enable new capabilities to be
loaded into long-running simulations, or bugs in existing capabilities fixed and
then reloaded without terminating the simulation.

| Scripting as an alternative or in co-operation with the scheduler

}

Currently the scheduler is rule-based, much like a make system.

~

For some applications and users it may be more natural to explicitly script
which actions happen when, although this then requires more knowledge of
the thorns than is currently needed to run Cactus.

Other Infrastructure Enhancements

� Support for more programming languages

�

Currently support C, C++, FORTRAN 77 and Fortran 90

�

Would like to add infrastructure for generic language support and in particular
for thorns written in Java, Perl, Python, ...

� Cactus Communication Infrastructure

�

Cactus supports a small number of parallel operations at the moment, and
these are provided by the “driver” thorn or its helpers.

�

Would like to support more parallel operations and perhaps allow drivers to
be built on top of such operations; thus allowing drivers to be independent of
underlying parallel infrastructure.

� Sub-grid-variables

�

Variables which are only distributed across faces of the computational grid.

�

These could be used, for example, for Cauchy-Characteristic Matching.

Other Infrastructure...

� Scheduling of aliased functions

�

Aliased functions are currently provided for inter-thorns calling, but in 4.1 we
want to make it possible to call such functions from the scheduler

� Arrangement paths

�

Currently all arrangements have to be in the arrangements directory of the
Cactus checkout (or be symlinked there). In 4.1 it will be possible to have
arrangements in many places.

�

This will also allow the central 'installation' of a Cactus checkout/tarball.

Connection To Other Frameworks

� There are many other frameworks for simulations

�

IEEE1516 High level Architecture

�

CCA

�

SciRun

�

PALM

�

OASIS

�

MpCCI

�

Overture

�

...

� Want to investigate and work on interoperability between the
Cactus Framework and thorns and these frameworks.

Other Things

� Central Thorn Information Page

�

Would like to have a page listing all publicly available thorns with brief
descriptions and a URL to more information.

� Newsletter and Community Pages

�

Currently it is not obvious what different disciplines use Cactus, we'd like to
produce a newsletter with news from communities and have more
comprehensive pages describing the communities.

� Increase community involvement in use and development of code,
and particularly of problem domain specific thorns or
arrangements, such as the Einstein arrangement.

Summary

� Cactus is a powerful framework for developing portable
applications, particularly suited to large collaborations. I've barely
scratched the surface in this talk.

�

See http://www.cactuscode.org for more information.

� Cactus is currently used by many groups around the world, in
several fields, and the number of users is growing.

� Cactus 4.0 was a major revamp of the infrastructure to make it
cleaner and more modular.

 Future versions of Cactus will add features which increase the
range of methods and problem domains which it is suited for.

¡ Feature requests welcome !

Various Links

¢ Cactus

£

http:// www.cactuscode.org

¤

http://www.cactuscode.org/Papers/VecPar_2002.pdf

¥ Numerical Relativity with Cactus

¦

http://www.cactuscode.org/Community/Relativity.html

§

www.appleswithapples.org

¨ Carpet fixed mesh refinement

©

http://www.tat.physik.uni-tuebingen.de/~schnette/carpet/

ª Computer Science projects:

«

GridLab: http://www.gridlab.org

¬

GriKSL: http://www.griksl.org

ASC: http://www.ascportal.org

®

SC2002 demos: http://sc2002.aei.mpg.de

¯

Grads: http://www.hipersoft.rice.edu/grads/applications.htm

