
Cactus 4.0

Maintainers’ Guide DRAFT VERSION

Contents

A 1 A1

A1 Philosophy A3

A2 Coding Style A4
A2.1 Indentation . A4
A2.2 Brace positioning . A4
A2.3 GRDOC . A5
A2.4 Header Files . A6
A2.5 Source Files . A6
A2.6 Naming Conventions . A7
A2.7 Functions . A7

B 2 B1

B1 Use of CVS B3

B2 Use of GNATS B4

B3 Release procedure B5

C 3 C1

C1 Introduction C3
C1.1 Note on philosophy of the make system . C3

C2 Make files C5
C2.1 Makefile . C5
C2.2 lib/make/make.configuration . C5
C2.3 lib/make/make.thornlib . C6
C2.4 lib/make/make.subdir . C6
C2.5 lib/make/make.pre and lib/make/make.post . C6

C3 Autoconf stuff C8
C3.1 configure.in . C8
C3.2 config.h.in . C9
C3.3 make.config.defn.in . C9
C3.4 make.config.rules.in . C9
C3.5 make.config.deps.in . C9
C3.6 aclocal.m4 . C9
C3.7 CCTK functions.sh . C9

i

C3.7.1 CCTK Search . C10
C3.7.2 CCTK CreateFile . C10
C3.7.3 CCTK WriteLine . C10

C3.8 known-architectures . C10
C3.9 extras . C10
C3.10 config.sub and config.guess . C11

C4 Perl scripts C12
C4.1 setup configuration.pl . C12
C4.2 configure.pl . C12
C4.3 new thorn.pl . C12

D 4 D1

D1 Introduction D3

D2 The Databases D4

D3 The Generated Files D5

D4 The Parsing Routines D6

D5 The Output Routines D7

D6 Miscellaneous Routines D8

E 5 E1

E1 Introduction E3

F 6 F1

F1 Introduction F3

G 7 G1

G1 Introduction G3

H 8 H1

H1 Introduction H3

I 9 I1

I1 Introduction I3

I2 Design and algorithms I4

I3 Implementation I5

ii

I4 Summary of Interfaces I6

J 10 J1

J1 XEmacs customisation J3

3

Preface

This document should describe the Cactus flesh. In particular it should describe

• The philosophy of the flesh

• The coding style used

• The make system

• The various source directories and all their files

• The perl scripts

In addition it should contain ideas for future enhancements.

Overview of documentation

This guide covers the following topics

Part A: Philosphy and Style.
The philosophy behind the flesh and the coding style used.

Part B: The Make System.
The nitty-gritty of the make system.

Part C: The CST.
The nitty-gritty of the CST.

Part D: General. General miscellaneous things used all over the flesh.

Part E: Main. Everything you never wanted to know about the files in the Main subdirectory of
the flesh.

Part F: Comm. Everything you never wanted to know about the files in the Comm subdirectory of
the flesh.

Part G: IO. Everything you never wanted to know about the files in the IO subdirectory of the
flesh.

Part H: Util. Everything you never wanted to know about the various utility files.

Part I: Schedule. Everything you never wanted to know about the Schedule system.

Part J: Appendices.
I’m sure we’ll need something here.

Other topics to be discussed in separate documents include:

Computational Thorn Guide
This will contain details about the arrangements and thorns making up the standard
Cactus Computation Tool Kit

4

Relativity Thorn Guide
This will contain details about the arrangements and thorns making up the Cactus
Relativity Tool Kit, one of the major motivators, and still the driving force, for the
Cactus Code.

Users’ Guide The stuff users need to know. This in particular documents the functions the flesh
needs to make available to the thorns.

Typographical Conventions

Typewriter Is currently used for everything you type, for program names, and code extracts.

< ... > Indicates a compulsory argument.

[...] Indicates an optional argument.

How to Contact Us

Please let us know of any errors or omissions in this guide, as well as suggestions for future editions.
These can be reported via our bug tracking system at http://www.cactuscode.org, or via email to
cactusmaint@cactuscode.org. Alternatively, write to us at

The Cactus Team
Center for Computation & Technology
216 Johnston Hall
Louisiana State University
Baton Rouge, LA 70803
USA

Acknowledgements

Hearty thanks to all those who have helped with documentation for the Cactus Code.

5

http://www.cactuscode.org

Part A

1

Philosphy and Style RCSfile A1/A7

Revision

Philosphy and Style RCSfile A2/A7

Chapter A1

Philosophy

• Portable

• Extensable

• Modular

Philosphy and Style RCSfile A3/A7

Chapter A2

Coding Style

The flesh has been written with the following coding guidelines; all Cactus* thorns should also follow
them.

A2.1 Indentation

Two spaces, no tabs.

Two spaces are enough to clearly indent, more would be a waste of space, less not really noticeable.

A2.2 Brace positioning

Each opening brace should appear on a line by itself, aligned with the preceeding statement.

Closing braces should line up with the corresponding opening brace, and should be on lines by themselves
apart from the while in a

do

{

...

} while(...);

statement.

This brace positioning stategy makes it easy to run ones eye from a closing or opening brace to its
matching opening or closing brace.

Braces should be used for all if and for statements.

Philosphy and Style RCSfile A4/A7

A2.3. GRDOC CHAPTER A2. CODING STYLE

A2.3 GRDOC

All files should start with a grdoc header, and all functions should have grdoc headers.

The file grdoc should contain a description of the contents of the file and a version with the CVS $Header$
tag.

The function grdoc should contain

• a description of the function, saying what it does.

• the functions called by this function.

• all function arguments with descriptions of what they are and what they are used for.

• the return codes should be described.

Note that the ‘calledby’ field should not be filled in as this is unmaintainable.

The standard grdoc function header is of the form

/*@@

@routine Template

@date Fri Oct 6 10:51:49 2000

@author Tom Goodale

@desc

An example of grdoc

@enddesc

@calls templatefunc2

@calledby

@history

@endhistory

@var templatestring

@vdesc string describing foobar

@vtype const char *

@vio in

@vcomment

@endvar

@returntype int *

@returndesc

0 - success

or the returncode of @seeroutine templatefunc2

@endreturndesc

@@*/

This is the form which will be created if you use the grdoc emacs mode. The variable descriptions and
the return code decription should be placed after the history so that they are close to the actual function.

After the first actual release the history should be filled in with each change.

Philosphy and Style RCSfile A5/A7

A2.4. HEADER FILES CHAPTER A2. CODING STYLE

A2.4 Header Files

Header files should not include any system header file, but should contain in the initial comment a list
of system header files which are assumed to have been included before this file is included.

The body of a header should be protected against multiple inclusion by lines of the form

#ifndef _NAMEOFHEADERFILEINCAPITALS_H_

#define _NAMEOFHEADERFILEINCAPITALS_H_ 1

...body of header file...

#endif /* _NAMEOFHEADERFILEINCAPITALS_H_ */

Function prototypes in header files should be protected against C++ linkage by

#ifdef __cplusplus

extern "C"

{

#endif

...prototypes...

#ifdef __cplusplus

}

#endif

The Cactus header files (cctk <name>) should only include information relevant for thorn programmers.

There is a template file in the doc/MaintGuide directory.

A2.5 Source Files

Source files should have as their first lines after all the include files:

static const char ∗ const rcsid = ”$Header$”;
CCTK FILEVERSION(<source file>);

or the expanded rcs version of this. The macro CCTK FILEVERSION is simply there to prevent
compiler warnings, and <source file> should be replaced by

• Flesh: <directory> <core filename> <extension> (e.g. main Groups c)

• Thorn: <arrangement> <thorn> <core filename> <extension>
(e.g. CactusBase CartGrid3D CartGrid3D c)

Philosphy and Style RCSfile A6/A7

A2.6. NAMING CONVENTIONS CHAPTER A2. CODING STYLE

Globally visable functions should appear before local functions.

(NOTE: currently the schedule stuff is a good example of what I’m coming to like as a style, e.g.
src/main/ScheduleInterface.c)

There is a template file in the doc/MaintGuide directory.

A2.6 Naming Conventions

All functions which may be used by thorns should have names beginning with CCTK and then capitalised
words with no underscores.

All functions used internally by the flesh should have names beginning with CCTKi and then capitalised
words with no underscores.

Header files to be included by thorns should have names beginning with cctk , and followed by capitalised
words with no underscores.

Structures which may be used by thorns should have names beginning with c and then capitalised words,
e.g. cGroup. The exception here is structures associated with utility routines which are not Cactus
specific, there the structure names should start with a t .

Structures which are purely internal to the flesh should have names beginning with i.

All Cactus sourcefile names (except general utility files) should use capitilised words without underscores.

A2.7 Functions

All functions should have a grdoc header.

They should have a single place of return at the end of the function to make it easy to tidy up and work
out what is going on.

Where possible variables should be declared at the top of the function with no initialisation, and then
initialised after all variable declarations. Of course this can’t apply to static variables, ’though these
should be kept to a minimum so we can make a thread-safe version of Cactus later.

Philosphy and Style RCSfile A7/A7

Part B

2

Procedures RCSfile B1/B6

Revision

Procedures RCSfile B2/B6

Chapter B1

Use of CVS

Version control in Cactus is maintained by the use of the CVS software. This software allows one to
trace any change to a file from the creation of a file to the present version, and provides an automatic
notification system to alert interested parties of changes to files. In order to make effective use of the
system, the following commit procedure is recommended as a guideline

Only make one change at a time
Don’t make a commit which changes several distinct things at once, as it is difficult
then for people tracing changes back to distinguish which bit was changed for which
reason. See the note on commit messages below.

Run the test suite This makes sure the code compiles, runs, and produces the correct results.

Know which files you are going to commit
Always check what you are about to commit by use of the

cvs -n -q update

command. This ensures that you know which files have been modified, which files
have been removed and which files have been added, and provides a useful reminder
to use the cvs add and cvs remove commands.

Know what has changed
The use of the

cvs diff

command on each modified file is a good check that you are not just committing
an accidental keystroke or a debug statement. Moreover it is a good reminder of
what has changed and needs to be mentioned in the commit message.

Provide clear and meaningful and relevant commit messages
The commit message should explain what has changed and why, for details people
can use cvs diff, however the commit message should be clear enough for people
to have a good idea of what is going on. This is strongly coupled to the item about
making only one change listed above - if two distinct things have been changed, they
should be committed separately, with relevant commit messages. If the change
resulted from a Problem Report (PR) the PR number should be noted in the
commit message.

Procedures RCSfile B3/B6

Chapter B2

Use of GNATS

Bug tracking in Cactus is maintained by use of the GNATS software. This software provides audit trails
of the status and all correspondence concerning any problem report (PR). Each problem is given a unique
number and assigned a responsible person.

Correspondence All correspondence with the author of the PR should be copied to bugs@cactuscode.org
with the subject line assigned by Gnats. This ensures that the correspondence is
entered into the audit trail.

Responsiblity When a PR comes in, it is assigned a responsible person. If another person wishes
to tackle the problem they should check with the responsible person, and then
assign themselves as the responsible person.

Initial auditing The responsible person should review the PR and check that the user supplied
fields are sensible. In particular the Synopsis should be an accurate reflection of
the problem, and the Priority and Severity fields should be set to the correct
levels. If the Release field is badly filled out, attempts should be made to determine
the relase version used by the PR submitter. If it is a duplicate of a previous PR
it should be marked as Duplicate.

Analysing the PR Once the responsible person has had a chance to review the PR, they should either
seek further information from the submitter and mark the PR state as Feedback,
or they should seek to determine the cause of the problem and mark it as Analysed.

Closing a PR Once a problem is fixed, the PR state should be changed to the current version
number of Cactus. The Fix field should be filled out with what was done, and CVS

version numbers for the changed files should be noted. Any miscellaneous comments
about the problem should be noted in the Release-Note field.

Procedures RCSfile B4/B6

Chapter B3

Release procedure

In the beta release cycle, Cactus is maintained in two CVS repositories - the ‘stable’ /cactus and the
development /cactusdevcvs. The stable version is the last beta release and no commits should ever
be made to it - it is for people who do not want to worry about things breaking from day to day. The
development version is the tree used for developing the next beta release.

Making a beta release consists of copying the cvs modules from the development repository to the stable
repository. The following procedure is used:

Notify committers of start of release procedure
This ensures that no commits are made during the following procedure. If it is
impossible, for some reason, to notify a person of the start of the procedure, that
person’s commit rights should be revoked during the procedure to prevent accidents.

Check the code on all supported architectures
The code should be checked out (in a fresh place), compiled and the test-suites run
on all suppported architectures. Problems found should be fixed or noted in the
release notes. This is an iterative procedure, as any commits made to fix problems
need to be checked on all other architectures.

Check example parameter files
The example parameter files in thorn par directories should be run and updated for
any additional or changed thorns or parameters.

Update ReleaseNotes The release notes should be added to the doc/ReleaseNotes file.

Tag the code Tag the code with the latest release tag and update the LATEST and STABLE tags.
The easiest way to do this is from a clean checkout.

cvs -d:pserver:<...>@cvs.cactuscode.org:/cactusdevcvs co Cactus

cd /Cactus

make checkout

cvs tag Cactus_4_0_Beta_X

cvs tag -F LATEST

cvs tag -F STABLE

Log into cvs machine as cactus admin
All repository maintanence should be done as the cactus admin user.

Procedures RCSfile B5/B6

CHAPTER B3. RELEASE PROCEDURE

Store old module files
A directory should be made in the stable repository, and all releaseable modules
should be moved into that directory. This will temporarily break checkouts/updates
from that repository. A suggested command is of the form

cd /cactus

mkdir 4.0/betaX

mv Cactus{,Base,Bench,Connect,Einstein,Elliptic,Examples,...} betaX

Copy new module files
e.g.

cp -r /cactusdevcvs/Cactus{,Base,Connect,Einstein,X,X,X} .

Fix permissions on new module files
find Cactus{,Base,Connect,Einstein,X,X,X} -type d -exec chmod 777 {} \;

export CVSROOT=/cactus

Setperms.pl public Cactus{,Base,Connect,Einstein,X,X,X}

Update CVS modules file for new modules
The stable repository’s modules file should be updated with any new module in-
formation added.

Check that checkout/update works
A fresh checkout should be made as a double check that all permissions have been
set correctly.

Update version of development tree
Update the version in Makefile and commit it to the development tree.

Re-enable commit access
People whose commit access was removed in the first part of this procedure should
have access re-enabled.

Notify people The relase notes should be sent out to the cactus mailing lists and any other relevant
places such as linux-announce and Freshmeat.

Update web page The release should be noted in the news section of the web page. Most informa-
tion such as generating documentation takes place automatically for the web pages,
the only thing which needs to be done manually is to checkout any new arrange-
ments in the Stable Release in the relevent directories in the CheckOut directory as
cactus web.

Close PRs Any problem reports which were closed in the beta relase should be audited for
correct entries in the Fix field and then their state should be marked as closed.

Procedures RCSfile B6/B6

Part C

3

The Make System RCSfile C1/C12

Revision

The Make System RCSfile C2/C12

Chapter C1

Introduction

The make system has several design criteria:

• Must be able to build the code on all supported platforms.

• Must allow object files and executables for different architectures to co-exist without conflicts.

• Must allow object files and exectutables for different compiler options to co-exist without conflict.

• Must allow object files and executables for different thornsets to co-exist without conflicts.

• Thorn-writers must be able to easily add and remove files from their thorns without having to edit
files provided by the flesh or other thorns.

• Thorn-writers must be able to control the compilation options and dependencies of their own thorns.

The first criterion is achieved by standarising to the use of the freely available GNU make programme,
which is available on all platforms, and the use of Autoconf to detect the specific features of the particular
machine the user is compiling on.

The next three criteria are achieved by the introduction of configurations which contain all the information
and object files associated with a particular combination of machine, compilation options and thorns.

The final criteria are achieved by allowing the thorn-writer to specify their files and options in configu-
ration files readable by the GNU make program, or by specifying their own make file.

C1.1 Note on philosophy of the make system

Make options can be divided into two classes.

• Configuration-time options Things which have an effect on the resulting executable. E.g. optimi-
sation or debugging options.

• Make-time options Things which don’t effect the final executable. E.g. warning-flags, flags to make
in parallel.

The Make System RCSfile C3/C12

C1.1. NOTE ON PHILOSOPHY OF THE MAKE SYSTEM CHAPTER C1. INTRODUCTION

Whenever an option is added to the make system care should be taken to preserve this distinction. It
should be possible to go to the config-data directory of a configuration and examine the files there to
determine how an executable was built. It should not be necessary to know the command-line used to
build it.

The Make System RCSfile C4/C12

Chapter C2

Make files

C2.1 Makefile

This is the master makefile.

In normal operation it calls make.configuration with the -j TJOBS flag to build TJOBS thorns in parallel.

C2.2 lib/make/make.configuration

This is the makefile which actually builds a configuration.

All built objects for a configuration go into a subdirectory called build of the configuration.

For each thorn listed in the make.thornlist file generated by the CST it runs make.thornlib or a file called
makefile in the thorn’s own source directory to generate a library for that thorn. Before running the
sub-makefile it changes directory to a subdirectory of the build directory with the same name as the
thorn and sets

• TOP The CCTK top-level directory.

• SRCDIR The thorn’s source directory.

• CONFIG The config subdirectory of the configuration.

• NAME The name of the library which should be created for the thorn (including directory info).

• THORN The name of the thorn.

The sub-makefile is passed the -j FJOBS flag to build FJOBS files in parallel.

If make.thornlist doesn’t exist, it runs the CST to generate it from the ThornList file.

If ThornList doesn’t exist, it generates a list of thorns in the arrangements and then gives the user the
option to edit the list.

The Make System RCSfile C5/C12

C2.3. LIB/MAKE/MAKE.THORNLIB CHAPTER C2. MAKE FILES

C2.3 lib/make/make.thornlib

This makefile is responsible for producing a library from the contents of a thorn’s source directory.

In each source directory of a thorn the author may put two files.

• make.code.defn This should contain a line

SRCS =

which lists the names of source files in that directory.

• make.code.deps This is an optional file which gives standard make dependency rules for the files in
that directory.

In addition the thorn’s top-level make.code.defn file can contain a line

SUBDIRS =

which lists all subdirectories of the thorn’s src directory which contain files to be compiled.

To process the subdirectories the makefile runs the sub-makefile make.subdir in each subdirectory.

Once that is done it compiles files in the src directory and then all the object files into a library which is
named by the NAME make-variable.

All object files are compiled by the rules given in make.config.rules.

Since the make language doesn’t contain looping constructions it is a bit tricky to construct the full list of
object files. To do this the makefile uses the GNU make foreach function to include all the subdirectory
make.code.defn files, along with two auxiliary files make.pre and make.post which are included respectively
before and after each make.code.defn file. These auxiliary files allow the SRCS variables set in the
make.code.defn files to be concatanated onto one make variable CCTK SRCS.

Extensive use is made of the two different flavours of variable (simply-expanded and recursively-expanded)
available within GNU make.

The GNU ‘-include’ construct is used to suppress warnings when an optional file is not available.

C2.4 lib/make/make.subdir

This builds all the object files for a specific subdirectory according to the list of files provided by the
make.code.defn file in that subdirectory. Extra dependencies can be provided for these files by the presence
of the optional file make.code.deps in the directory.

C2.5 lib/make/make.pre and lib/make/make.post

These are auxiliary files used to construct the full list of source files for a particular thorn.

The Make System RCSfile C6/C12

C2.5. LIB/MAKE/MAKE.PRE AND LIB/MAKE/MAKE.POST CHAPTER C2. MAKE FILES

make.pre resets the SRCS variable to an empty value. make.post adds the name of the subdirectory onto
all filenames in the SRCS variable and adds the resulting list to the CCTK SRCS make variable.

The Make System RCSfile C7/C12

Chapter C3

Autoconf stuff

GNU autoconf is a program designed to detect the features available on a particular platform. It can be
used to determine the compilers available on a platform, what the CPU and operating system are, what
flags the compilers take, and as many other things as m4 macros can be written to cover.

Autoconf is configured by a file configure.in which autoconf turns into a file called configure (which should
never be editted by hand). The cactus configuration includes the resulting configure file and this should
not need to be regenerated by other than flesh-maintainers.

When the configure script is run it takes the files config.h.in, make.config.defn.in, make.config.rules.in,
and make.config.deps.in and generates new files in the configuration’s config-data subdirectory with the
same names with the .in stripped off. The configure script replaces certain parts of these files with the
values it has detected for this architecture.

In addition configure runs the configure.pl perl script to do things which can only be done easily by perl.

C3.1 configure.in

This and the macro-definition file aclocal.m4 are the sources for the configure script. Autoconf should be
run in this directory if either of these files is editted.

Once the script has determined the host architecture, it checks the known-architecture directory for any
preferred compilers. By default autoconf macros will choose GNU CC if it is available, however for some
architectures this may not be desirable.

It then proceeds to determine the available compilers and auxiliary programs if they haven’t alrady been
specified in an environment variable or in the known-architecture file for this architecture.

Once the set of programs to be used has been detected or chosen, the known-architecture files are again
checked for specific features which would otherwise require the writing of complicated macros to detect.
(Remember that the goal is that people don’t need to write autoconf macros or run autoconf themselves.)

Once that is done it looks at each subdirectory of the extras directory for packages which have their own
configuration process. If a subdirectory has an exectubale file called setup.sh this is called.

The Make System RCSfile C8/C12

C3.2. CONFIG.H.IN CHAPTER C3. AUTOCONF STUFF

The rest of the script is concerned with detecting various header files, sizes of various types, and of setting
defaults for things which haven’t been set by the known-architecture file.

C3.2 config.h.in

This file is turned into config.h in the config-data directory in the configuration.

It contains C preprocessor macros which define various features or configuration options.

C3.3 make.config.defn.in

This file is turned into make.config.defn in the config-data directory in the configuration.

It contains make macros needed to define or build the particular configuration.

C3.4 make.config.rules.in

This file is turned into make.config.rules in the config-data directory in the configuration.

It contains the rules needed to create an object file from a source file. Note that currently this isn’t
modified by the configuration process, as everything is controlled from variables in the make.config.defn
file. However this situation may change in the future if really necessary.

C3.5 make.config.deps.in

This file is turned into make.config.deps in the config-data directory in the configuration.

Currently this file is empty; it may gain content later if we need to use autoconf to generate dependency
stuff.

C3.6 aclocal.m4

This contains m4 macros not distributed with autconf.

C3.7 CCTK functions.sh

This contains Bourne-shell functions which can be used by the configure script, or by stuff in the extras
or known-architrectures subdirectories.

The Make System RCSfile C9/C12

C3.8. KNOWN-ARCHITECTURES CHAPTER C3. AUTOCONF STUFF

C3.7.1 CCTK Search

This can be used to search a set of directories for a specific file or files and then set a variable as a result.

Usage: CCTK Search <variable> <subdirectories to search> <what to search for> [base directory]

It will search each of the listed subdirectories of the base directory for the desired file or directory, and,
if it’s found, set the variable to the name of the subdirectory.

C3.7.2 CCTK CreateFile

Creates a file with specific contents.

Usage: CCTK CreateFile <filename> <content>

Note that this can only put one line in the file to begin with. Additional lines can be added with
CCTK WriteLine.

C3.7.3 CCTK WriteLine

Write one line to a file.

Usage: CCTK WriteLine <file> <line>

C3.8 known-architectures

This contains files which tell autoconf about specific not-easily-detectable features about particular ar-
chitectures. Each file in this directory is named with the name held by the host os autoconf variable.

Each file is called twice by the configure script. Once to determine the ‘preferred-compilers’ for that
architecture, and once for everything else.

The first time is straight after the operating system is determined, and the variable CCTK CONFIG STAGE
is set to ‘preferred-compilers’. It should only set the names of compilers, and not touch anything else.

The second time it is called is after the compilers and auxiliary programs have been detected or otherwise
chosen. CCTK CONFIG STAGE is set to ‘misc’ in this case. This stage can be used to set compiler
options based upon the chosen compilers. The scripts are allowed to write (append) to cctk archdefs.h in
this stage if it needs to add to the C preprocessor macros included by the code. CCTK WriteLine can
be used to write to the file.

C3.9 extras

This directory is used to hold configuration programs for optional extra packages.

If a subdirectory of this directory contains an executable file setup.sh, this file is run.

The Make System RCSfile C10/C12

C3.10. CONFIG.SUB AND CONFIG.GUESS CHAPTER C3. AUTOCONF STUFF

The two files cctk extradefs.h and make.extra.defn can be appended to, to add c preprocessor macros or
add/modify make variables respectively. CCTK WriteLine can be used to do this.

Note that include directories should be added to SYS INC DIRS and not directly to INC DIRS.

C3.10 config.sub and config.guess

These files are provided in the autoconf distribution. They are used to determine the host operating
system, cpu, etc and put them into a canonical form.

The files distributed with Cactus are slightly modified to allow recognition of the Cray T3E, to work with
the Portland compilers under Linux, and to not do something stupid with unrecognised HP machines.

The Make System RCSfile C11/C12

Chapter C4

Perl scripts

Various perl scripts are used in the make system.

C4.1 setup configuration.pl

This is called by the top level makefile to create a new configuration or to modify an old one. It parses an
options file setting environment variables as specified in that file, and then runs the autoconf-generated
configure script.

C4.2 configure.pl

This file is called from the configure script to determine the way Fortran names are represented for the
specified Fortran compiler. It works out the names for subroutines/functions, and for common blocks,
and writes a perl script which can be used to convert a name to the appropriate form so C and Fortran
can be linked together.

C4.3 new thorn.pl

This generates the skeleton for a new thorn.

The Make System RCSfile C12/C12

Part D

4

The CST RCSfile D1/D8

Revision

The CST RCSfile D2/D8

Chapter D1

Introduction

The CST is really the glue which holds the code together. It takes the specifications which users have
provided in their .ccl files and generates C header and source files which are used to tell the flesh about
the thorns.

The processing is done in three stages. In the first stage the .ccl files from each thorn in the ThornList
are parsed and the data from them is stored internally in databases. In the second stage the data is cross-
indexed for consistency. Finally the files are written out into the bindings directory in the configuration
directory.

The CST RCSfile D3/D8

Chapter D2

The Databases

The CST RCSfile D4/D8

Chapter D3

The Generated Files

The CST RCSfile D5/D8

Chapter D4

The Parsing Routines

The CST RCSfile D6/D8

Chapter D5

The Output Routines

The CST RCSfile D7/D8

Chapter D6

Miscellaneous Routines

The CST RCSfile D8/D8

Part E

5

The Main subdirectory RCSfile E1/E3

Revision

The Main subdirectory RCSfile E2/E3

Chapter E1

Introduction

The Main subdirectory RCSfile E3/E3

Part F

6

The Comm subdirectory RCSfile F1/F3

Revision

The Comm subdirectory RCSfile F2/F3

Chapter F1

Introduction

The Comm subdirectory contains the routines which deal with communication issues.

The Comm subdirectory RCSfile F3/F3

Part G

7

The IO subdirectory RCSfile G1/G3

Revision

The IO subdirectory RCSfile G2/G3

Chapter G1

Introduction

The IO subdirectory contains the routines which deal with IO methods.

The IO subdirectory RCSfile G3/G3

Part H

8

The Util subdirectory RCSfile H1/H3

Revision

The Util subdirectory RCSfile H2/H3

Chapter H1

Introduction

The utils subdirectory contains miscelleanous utilities which are in principle independent of the rest of
Cactus.

The Util subdirectory RCSfile H3/H3

Part I

9

The Schedule System RCSfile I1/I6

Revision

The Schedule System RCSfile I2/I6

Chapter I1

Introduction

The schedule system is used to determine the order of executaion of user-supplied subroutines as scheduled
by thorns in their schedule.ccl.

The Schedule System RCSfile I3/I6

Chapter I2

Design and algorithms

The Schedule System RCSfile I4/I6

Chapter I3

Implementation

The Schedule System RCSfile I5/I6

Chapter I4

Summary of Interfaces

The Schedule System RCSfile I6/I6

Part J

10

Appendices RCSfile J1/J3

Revision

Appendices RCSfile J2/J3

Chapter J1

XEmacs customisation

Here’s the relevent section from my .emacs file for the coding guidelines

(require ’grdoc)

; C-mode customisation

(defun my-c-mode-common-hook ()

;; my customizations for all of c-mode, c++-mode, objc-mode, java-mode

(c-set-offset ’substatement-open 0)

(c-set-offset ’case-label ’+)

;; other customizations can go here

(turn-on-grdoc-mode)

(font-lock-mode)

(setq indent-tabs-mode nil)

)

(add-hook ’c-mode-common-hook ’my-c-mode-common-hook)

Appendices RCSfile J3/J3

	A 1
	Philosophy
	Coding Style
	Indentation
	Brace positioning
	GRDOC
	Header Files
	Source Files
	Naming Conventions
	Functions

	B 2
	Use of CVS
	Use of GNATS
	Release procedure

	C 3
	Introduction
	Note on philosophy of the make system

	Make files
	Makefile
	lib/make/make.configuration
	lib/make/make.thornlib
	lib/make/make.subdir
	lib/make/make.pre and lib/make/make.post

	Autoconf stuff
	configure.in
	config.h.in
	make.config.defn.in
	make.config.rules.in
	make.config.deps.in
	aclocal.m4
	CCTK_functions.sh
	CCTK_Search
	CCTK_CreateFile
	CCTK_WriteLine

	known-architectures
	extras
	config.sub and config.guess

	Perl scripts
	setup_configuration.pl
	configure.pl
	new_thorn.pl

	D 4
	Introduction
	The Databases
	The Generated Files
	The Parsing Routines
	The Output Routines
	Miscellaneous Routines

	E 5
	Introduction

	F 6
	Introduction

	G 7
	Introduction

	H 8
	Introduction

	I 9
	Introduction
	Design and algorithms
	Implementation
	Summary of Interfaces

	J 10
	XEmacs customisation

