
Cactus 4.0

Users’ Guide

Contents

A Introduction A1

A1 Getting Started A2
A1.1 Obtaining Cactus . A2

A1.1.1 Directory Structure . A2
A1.2 Compiling a Cactus application . A3

A1.2.1 Creating a Configuration . A3
A1.3 Running a Cactus application . A4

A2 Getting and looking at output A5
A2.1 Screen output . A5
A2.2 File output . A6

A3 Checkpointing/Recovery A7

A4 Reporting bugs A8

B Additional notes B1

B1 Installation B2
B1.1 Required Software . B2
B1.2 Supported Architectures . B3

B1.2.1 Note . B4

B2 Compilation B5
B2.1 Configuration Options . B5

B2.1.1 Available Options . B6
B2.2 Compiling with Extra Packages . B10

B2.2.1 MPI: Message Passing Interface . B10
B2.2.2 HDF5: Hierarchical Data Format version 5 . B12
B2.2.3 LAPACK: Linear Algebra PACKage . B12
B2.2.4 PETSc: Portable, Extensible Toolkit for Scientific Computation B12
B2.2.5 Pthreads: POSIX threads . B13

B2.3 File Layout . B13
B2.4 Building and Administering a Configuration . B14

B2.4.1 gmake Targets for Building and Administering Configurations B14
B2.4.2 Compiling in Thorns . B15
B2.4.3 Notes and Caveats . B16
B2.4.4 gmake Options for building configurations . B16

B2.5 Other gmake Targets . B16
B2.6 Testing . B17

i

B3 Runtime options B18
B3.1 Command-Line Options . B18
B3.2 Parameter File Syntax . B20
B3.3 Thorn Documentation . B23

B4 Getting and Looking at Output B24
B4.1 Screen Output . B24
B4.2 Output . B25

C Thorn Writing C1

C1 Application thorns C3
C1.1 Thorn Concepts . C3

C1.1.1 Thorns . C3
C1.1.2 Arrangements . C3
C1.1.3 Implementations . C4

C1.2 Anatomy of a Thorn . C4
C1.2.1 Thorns . C4
C1.2.2 Creating a Thorn . C5
C1.2.3 Configuring your Thorn . C5
C1.2.4 Naming Conventions for Source Files . C13
C1.2.5 Adding Source Files . C14

C1.3 Cactus Variables . C16
C1.3.1 Data Type . C16
C1.3.2 Group Types . C17
C1.3.3 Timelevels . C17
C1.3.4 Size and Distrib . C18
C1.3.5 Ghost Zones . C18
C1.3.6 Information about Grid Variables . C19

C1.4 Cactus Parameters . C20
C1.4.1 Types and Ranges . C20
C1.4.2 Scope . C22
C1.4.3 Steerable . C22

C1.5 Scheduling . C22
C1.5.1 Schedule Bins . C23
C1.5.2 Groups . C23
C1.5.3 Schedule Options . C23
C1.5.4 The Schedule Block . C24
C1.5.5 How Cactus Calls Scheduled Functions . C24

C1.6 Writing a Thorn . C25
C1.6.1 Thorn Programming Languages . C25
C1.6.2 What the Flesh Provides . C25
C1.6.3 Parallelisation . C34

C1.7 Cactus Application Interfaces . C34
C1.7.1 Iterating Over Grid Points . C34
C1.7.2 Coordinates . C35
C1.7.3 I/O . C39
C1.7.4 Interpolation Operators . C40
C1.7.5 Reduction Operators . C41

C1.8 Completing a Thorn . C47
C1.8.1 Commenting Source Code . C47

ii

C1.8.2 Providing Runtime Information . C48
C1.8.3 Error Handling, Warnings and Code Termination C48
C1.8.4 Adding Documentation . C51
C1.8.5 Adding a Test Suite . C53

C1.9 Advanced Thorn Writing . C55
C1.9.1 Using Cactus Timers . C55
C1.9.2 Include Files . C57
C1.9.3 Memory Tracing . C58
C1.9.4 Calls to different language . C60
C1.9.5 Function aliasing . C63
C1.9.6 Naming Conventions . C66
C1.9.7 General Naming Conventions . C66
C1.9.8 Data Types and Sizes . C66

C1.10 Telling the Make system What to Do . C69
C1.10.1 Basic Recipe . C69
C1.10.2 Make Concepts . C69
C1.10.3 The Four Files . C69
C1.10.4 How your code is built . C69

C2 Infrastructure Thorns C70
C2.1 Concepts and Terminology . C70

C2.1.1 Overloading and Registration . C70
C2.1.2 GH Extensions . C71
C2.1.3 I/O Methods . C71

C2.2 GH Extensions . C71
C2.3 Overloadable and Registerable Functions in Main . C71
C2.4 Overloadable and Registerable Functions in Comm . C72
C2.5 Overloadable and Registerable Functions in I/O . C72
C2.6 Drivers . C72

C2.6.1 Anatomy . C72
C2.6.2 Startup . C72
C2.6.3 The GH Extension . C73
C2.6.4 Memory Functions . C76

C2.7 I/O Methods . C77
C2.7.1 I/O Method Registration . C78
C2.7.2 Periodic Output of Grid Variables . C78
C2.7.3 Triggered Output of Grid Variables . C78
C2.7.4 Unconditional Output of Grid Variables . C79

C2.8 Checkpointing/Recovery Methods . C79
C2.8.1 Checkpointing Invocation . C79
C2.8.2 Recovery Invocation . C80

C2.9 Clocks for Timing . C81

D Appendices D1

D1 Glossary D2

D2 Configuration File Syntax D8
D2.1 General Concepts . D8
D2.2 interface.ccl . D8

D2.2.1 Header Block . D9

iii

D2.2.2 Include Files . D9
D2.2.3 Function Aliasing . D9
D2.2.4 Variable Blocks . D10

D2.3 param.ccl . D12
D2.3.1 Parameter Data Scoping Items . D12
D2.3.2 Parameter Object Specification Items . D12

D2.4 schedule.ccl . D14
D2.4.1 Assignment Statements . D15
D2.4.2 Schedule Blocks . D15
D2.4.3 Conditional Statements . D19

D2.5 configuration.ccl . D19
D2.5.1 Configuration Scripts . D20

D3 Utility Routines D21
D3.1 Introduction . D21
D3.2 Key/Value Tables . D21

D3.2.1 Motivation . D21
D3.2.2 The Basic Idea . D21
D3.2.3 A Simple Example . D22
D3.2.4 Arrays as Table Values . D23
D3.2.5 Character Strings . D24
D3.2.6 Convenience Routines . D25
D3.2.7 Table Iterators . D26
D3.2.8 Multithreading and Multiprocessor Issues . D26
D3.2.9 Metadata about All Tables . D26

D4 Schedule Bins D27

D5 Flesh Parameters D30
D5.1 Private Parameters . D30
D5.2 Restricted Parameters . D31

D6 Using TRAC D32

D7 Using SVN D34
D7.1 Essential SVN Commands . D34

D8 Using Tags D36
D8.1 Tags with Emacs . D36
D8.2 Tags with vi . D37

4

Preface

This document contains a quick-start guide to installing and running a Cactus application. In subsequent
chapters, it provides more detailed information on advanced user’s topics, as well as an introduction to
thorn writing. Please report omissions, errors, or suggestions to any of our contact addresses below.

Overview of documentation

Part A: Introduction to Cactus.
A guide through the process of obtaining and installing Cactus and running a simple
example application with it.

Part B: Additional Notes.
A more in-depth description of required hardware and software, along with config-
uration, installation and running options. Describes how to check the installation
with Cactus test suites.

Part C: Thorn Writing.
An introduction to thorn concepts and description of how to create, write and main-
tain application thorns. Explanation of use of the programming interface to take
advantage of parallelism and modularity. This is followed by a more advanced dis-
cussion of user supplied infrastructure routines such as additional output routines,
drivers, etc.

Part D: Appendices.
These contain a glossary, a description of the Cactus Configuration Language, the
Utility routines and other odds and ends, such as how to use GNATS and TAGS.

Related topics are discussed in separate documents including:

Reference Manual Contains detailed descriptions of the functions provided by the Cactus flesh API,
along with other reference material.

Typographical Conventions

Typewriter Is currently used for everything you type, for program names, and code extracts.

< ... > Indicates a compulsory argument.

[...] Indicates an optional argument.

| Indicates an exclusive or.

How to Contact Us

Please let us know of any errors or omissions in this guide, as well as suggestions for future editions.
These can be reported via our bug tracking system at http://www.cactuscode.org, or via email to
cactusmaint@cactuscode.org. Alternatively, you can write to us at

5

http://www.cactuscode.org

The Cactus Team
Center for Computation & Technology
216 Johnston Hall
Louisiana State University
Baton Rouge, LA 70803
USA

Acknowledgements

Hearty thanks to all those who have helped with documentation for the Cactus Code. Special thanks to
those who struggled with the earliest sparse versions of this guide and sent in mistakes and suggestions,
in particular John Baker, Carsten Gundlach, Ginny Hudak-David, Sai Iyer, Paul Lamping, Nancy Tran
and Ed Seidel.

6

Part A

Introduction

Revision : 4782 A1/A8

Chapter A1

Getting Started

A1.1 Obtaining Cactus

Cactus is distributed, extended, and maintained using the free Subversion software (http://subversion.
apache.org/docs/) SVN allows many people to work on a large software project together without getting
into a tangle. Since Cactus thorns are distributed from several repositories on the main SVN site, and
from a growing number of user sites, we provide a GetComponents script on our website for checking out
the flesh and thorns. The script is available at

https://github.com/gridaphobe/CRL/raw/ET_2011_10/GetComponents.

The script takes as an argument the name of a file containing a ThornList, that is a list of thorns with
the syntax

<arrangement name>/<thorn name>

Optional directives in the ThornList indicate which repository to fetch thorns from. The ThornList is
written in the Component Retrieval Language, documented at https://github.com/gridaphobe/CRL/

wiki/Component-Retrieval-Language.

The same script can be used to checkout additional thorns, or to update existing ones.

The components that make up Cactus can also be checked out directly using SVN from http://svn.

cactuscode.org.

Another script, MakeThornList, can be used to produce a minimal ThornList from a given Cactus par
file. It needs a master ThornList to be copied into your Cactus directory.

See http://cactuscode.org/download/thorns/MakeThornList.

A1.1.1 Directory Structure

A fresh checkout creates a directory Cactus with the following subdirectories:

Revision : 4782 A2/A8

http://subversion.apache.org/docs/
http://subversion.apache.org/docs/
https://github.com/gridaphobe/CRL/raw/ET_2011_10/GetComponents
https://github.com/gridaphobe/CRL/wiki/Component-Retrieval-Language
https://github.com/gridaphobe/CRL/wiki/Component-Retrieval-Language
http://svn.cactuscode.org
http://svn.cactuscode.org
http://cactuscode.org/download/thorns/MakeThornList

A1.2. COMPILING A CACTUS APPLICATION CHAPTER A1. GETTING STARTED

.svn the SVN bookkeeping directory, present in every subdirectory

doc Cactus documentation

lib contains libraries

src contains the source code for Cactus

arrangements contains the Cactus arrangements. The arrangements (the actual “physics”) are not
supplied by just checking out just Cactus. If the arrangements you want to use are
standard Cactus arrangements, or reside on our SVN repository (svn.cactuscode.org),
they can be checked out in similar way to the flesh.

When Cactus is first compiled, it creates a new directory Cactus/configs, which will contain all the
source code, object files and libraries created during the build process.

Configurations are described in detail in Section A1.2.1.

A1.2 Compiling a Cactus application

Cactus can be built in different configurations from the same copy of the source files, and these different
configurations coexist in the Cactus/configs directory. Here are several instances in which this can be
useful:

1. Different configurations can be for different architectures. You can keep executables for multiple
architectures based on a single copy of source code, shared on a common file system.

2. You can compare different compiler options, and debug-modes. You might want to compile different
communication protocols (e.g. MPI or Globus), or leave them out all together.

3. You can have different configurations for different thorn collections compiled into your executable.

A1.2.1 Creating a Configuration

At its simplest, this is done by gmake <config>. This generates a configuration with the name config ,
doing its best to automatically determine the default compilers and compilation flags suitable for the
current architecture.

There are a number of additional command-line arguments which may be supplied to override some parts
of the procedure; they are listed in Section B2.1.

Once you have created a new configuration, the command

gmake <configuration name>

will build an executable, prompting you along the way for the thorns which should be included. There is
a range of gmake targets and options which are detailed in Section B2.4.1.

Revision : 4782 A3/A8

A1.3. RUNNING A CACTUS APPLICATION CHAPTER A1. GETTING STARTED

A1.3 Running a Cactus application

Cactus executables always run from a parameter file (which may be provided as a command-line argument
taken from standard input), which specifies which thorns to use and sets the values of each thorn’s
parameters (the parameters that are not set will take on default values, see D2.3).

There is no restriction on the name of the parameter file, although it is conventional to use the file
extension .par. Optional command-line arguments can be used to customise runtime behaviour, and
to provide information about the thorns used in the executable. The general syntax for running Cactus
from a parameter file is then

./cactus <config> <parameter file> [command-line options]

A parameter file is a text file whose lines are either comments or parameter statements. Comments are
blank lines or lines that begin with either ‘#’ or ‘!’. A parameter statement consists of one or more
parameter names, followed by an ‘=’, followed by the value(s) for this (these) parameter(s). Note that all
string parameters are case insensitive.

The first parameter statement in any parameter file should set ActiveThorns, which is a special parameter
that tells the program which thorns are to be activated. Only parameters from active thorns can be set
(and only those routines scheduled by active thorns are run). By default all thorns are inactive. For
example, the first entry in a parameter file which is using just the two thorns CactusPUGH/PUGH and
CactusBase/CartGrid3D should be

ActiveThorns = "PUGH CartGrid3D"

Parameter specifications following ActiveThorns usually are carried out by listing the name of the thorn
which defined the parameter, two colons, and the name of the parameter — e.g. wavetoyF77::amplitude
(see Section C1.4.2 for more information).

Notes:

• You can obtain lists of the parameters associated with each thorn using the command-line options
-o and -O (Section B3.1).

• For examples of parameter files, look in the par directory which can be found in most thorns.

• The Cactus make system provides a mechanism for generating a Thorn Guide containing separate
chapters for each thorn and arrangement in your configuration. Details about parameters, grid
variables and scheduling are automatically included in from a thorns CCL files into the Thorn
Guide. To construct a Thorn Guide for the configuration <config> use

gmake <config>-ThornGuide

or to make a Thorn Guide for all the thorns in the arrangements directory

gmake <config>.

Revision : 4782 A4/A8

Chapter A2

Getting and looking at output

A2.1 Screen output

As your Cactus executable runs, standard output and standard error are usually written to the screen.
Standard output provides you with information about the run, and standard error reports warnings and
errors from the flesh and thorns.

As the program runs, the normal output provides the following information:

Active thorns A report is made as each of the thorns in the ActiveThorns parameters from the
parameter file (see Section B3.2) is attempted to be activated. This report shows
whether the thorn activation was successful, and if successful gives the thorn’s
implementation. For example

Activating thorn idscalarwave...Success -> active implementation idscalarwave

Failed parameters If any of the parameters in the parameter file does not belong to any of the active
thorns, or if the parameter value is not in the allowed range (see Section C1.4.1),
an error is registered. For example, if the parameter is not recognised

Unknown parameter time::ddtfac

or if the parameter value is not in the allowed range

Unable to set keyword CartGrid3D::type - ByMouth not in any active range

Scheduling information
The scheduled routines (see Section C1.5), are listed, in the order that they will be
executed. For example

--

Startup routines

Cactus: Register banner for Cactus

CartGrid3D: Register GH Extension for GridSymmetry

Revision : 4782 A5/A8

A2.2. FILE OUTPUT CHAPTER A2. GETTING AND LOOKING AT OUTPUT

CartGrid3D: Register coordinates for the Cartesian grid

IOASCII: Startup routine

IOBasic: Startup routine

IOUtil: IOUtil startup routine

PUGH: Startup routine

WaveToyC: Register banner

Parameter checking routines

CartGrid3D: Check coordinates for CartGrid3D

IDScalarWave: Check parameters

Initialisation

CartGrid3D: Set up spatial 3D Cartesian coordinates on the GH

PUGH: Report on PUGH set up

Time: Set timestep based on speed one Courant condition

WaveToyC: Schedule symmetries

IDScalarWave: Initial data for 3D wave equation

do loop over timesteps

WaveToyC: Evolution of 3D wave equation

t = t+dt

if (analysis)

endif

enddo

--

Thorn banners Usually a thorn registers a short piece of text as a banner. This banner of each
thorn is displayed in the standard output when the thorn is initialised.

A2.2 File output

Output methods in Cactus are all provided by thorns. Any number of output methods can be used for
each run. The behaviour of the output thorns in the standard arrangements are described in those thorns’
documentation.

In general, output thorns decide what to output by parsing a string parameter containing the names
of those grid variables, or groups of variables, for which output is required. The names should be fully
qualified with the implementation and group or variable names.

There is usually a parameter for each method to denote how often, in evolution iterations, this output
should be performed. There is also usually a parameter to define the directory in which the output should
be placed, defaulting to the directory from which the executable is run.

See Chapter C2.7 for details on creating your own IO method.

Revision : 4782 A6/A8

Chapter A3

Checkpointing/Recovery

Checkpointing is defined as saving the current state of a run (parameter settings, contents of grid variables,
and other relevant information) to a file. At a later time, this run can then be restarted from that state
by recovering all the data from the checkpoint file.

Cactus checkpointing and recovery methods are provided by thorns. In general, these thorns decide how
often to generate a checkpoint. They also register their recovery routines with the flesh; these recovery
routines may then be called during initialisation of a subsequent run to perform the recovery of the state
of the run. Such a recovery is requested by setting a parameter in the parameter file.

See Chapter C2.8 for details of how to create your own checkpointing and recovery methods.

Revision : 4782 A7/A8

Chapter A4

Reporting bugs

For tracking problem reports and bugs, we use the TRAC bug tracking system located at http://trac.
einsteintoolkit.org which allows easy submission and browsing of problem tickets.

A description of the TRAC categories we use is provided in the Appendix D6.

Revision : 4782 A8/A8

http://trac.einsteintoolkit.org
http://trac.einsteintoolkit.org

Part B

Additional notes

Revision : 5127 B1/B25

Chapter B1

Installation

B1.1 Required Software

In general, Cactus requires the following set of software to function in single processor mode. Please refer
to the architecture section B1.2 for architecture specific items.

Perl5.0 Perl is used extensively during the Cactus thorn configuration phase. Perl is
available for nearly all operating systems known to man, and can be obtained
at http://www.perl.org.

GNU make The make process works with the GNU make utility (referred to as gmake hence-
forth). While other make utilities may also work, this is not guaranteed. Gmake
can be obtained from your favorite GNU site, or from http://www.gnu.org.

C C compiler. For example, the GNU compiler. This is available for most supported
platforms. Platform specific compilers should also work.

CPP C Preprocessor. For example, the GNU cpp. These are normally provided on most
platforms, and many C compilers have an option to just run as a preprocessor.

SVN Subversion is not needed to run/compile Cactus, but you are strongly encouraged
to install this software to take advantage of the update procedures. It can be
downloaded from http://subversion.apache.org.

To use Cactus, with the default driver1 (CactusPUGH/PUGH) on multiple processors you also need to
include the thorn ExternalLibraries/MPI in your thornlist, to include support for

MPI The Message Passing Interface, which provides inter-processor communication. Su-
percomputing sites often supply a native MPI implementation that is very likely
to be compatible with Cactus. Otherwise, there are various freely available ones
available, e.g. the OpenMPI version of MPI is available for various architectures
and operating systems at http://www.open-mpi.org/.

1For help with unfamiliar terms, please consult the glossary, Appendix D1.

Revision : 5127 B2/B25

http://www.perl.org
http://www.gnu.org
http://subversion.apache.org
http://www.open-mpi.org/

B1.2. SUPPORTED ARCHITECTURES CHAPTER B1. INSTALLATION

If you are using any thorns containing routines written in C++ you also need

C++ C++ compiler. For example, the GNU compiler. This is available for most sup-
ported platforms. Platform specific compilers should also work. Note that if a C++
compiler is available, then the main() routine in the flesh is compiled with C++ to
allow static class initialisations.

If you are using any thorns containing routines written in CUDA (Compute Unified Device Architecture),
a parallel computing architecture developed by NVIDIA, you also need

CUCC a CUDA compiler. For example, the NVIDIA C compiler. In many cases, you can
compile your C and C++ code with a CUDA compiler without encountering any
problems, but you are advised to use a CUDA compiler exclusively for CUDA code.

If you are using any thorns containing routines written in Fortran you also need

F90 a Fortran compiler.

While not required for compiling or running Cactus, for thorn development it is useful to install

ctags/etags These programs enable you browse through the calling structure of a program by
help of a function call database. Navigating the flesh and arrangements becomes
very easy. Emacs and vi both support this method. See D8 for a short guide to
tags.

B1.2 Supported Architectures

Cactus runs on many machines, under a large number of operating systems, on a large number of CPU
architectures. Here, we list the machines we have recently (in the past few years) compiled and verified
Cactus on, including some architecture specific notes.

If your system is not on the list, the it is very likely that Cactus will work anyway. As a rule of thumb,
if the GCC compiler is available, Cactus will run.

Operating systems:

Linux (this includes Blue Gene and Cray systems)

OS X

CPU architectures:

ARM

Blue Gene/P

IBM PowerA2 (aka Blue Gene/Q)

Revision : 5127 B3/B25

B1.2. SUPPORTED ARCHITECTURES CHAPTER B1. INSTALLATION

IBM Power (Power 5, 6, 7)

MIC (aka Xeon Phi)

x86 (aka IA32)

x86-64 (aka AMD64)

Systems that are of historic interest only:

SGI 32 or 64 bit running Irix.

Cray T3E

Compaq Alpha Compaq operating system and Linux. Single processor mode and MPI supported.
The Alphas need to have the GNU C/C++ compilers installed.

IA64 running Linux.

Macintosh PowerPC
(MacOS X and Linux PPC)

IBM SP2,SP3,SP4 32 or 64 bit running AIX.

Hitachi SR8000-F1

Sun Solaris

Fujitsu

NEC SX-5, SX-6

HP Exemplar (only partially supported)

B1.2.1 Note

Disk space may be a problem on supercomputers where home directories are small. A workaround is to
first create a configs directory on scratch space, say scratch/cactus configs/ (where scratch/ is your
scratch directory), and then either

• set the environment variable CACTUS CONFIGS DIR to point to this directory

or

• soft link this directory (ln -s scratch/cactus configs Cactus/configs/) to the Cactus direc-
tory, if your filesystem supports soft links.

Revision : 5127 B4/B25

Chapter B2

Compilation

B2.1 Configuration Options

There are four ways to pass options to the configuration process.

1 Pass options individually in shell environment variables:

export <option name>=<chosen value> # for bash

setenv <option name> <chosen value> # for (t)csh

gmake <configuration name>-config

2a Either: create a default configuration file ${HOME}/.cactus/config.

All available configuration options may be set in a default options file ${HOME}/.cactus/config,
any option which are not set will take a default value. The file should contain lines of the form:

<option> [=] ...

The equals sign is optional. Spaces are allowed everywhere. Text starting wit a ’#’ character will
be ignored as a comment.

2b Or: list your Cactus configuration files in an environment variable CACTUS CONFIG FILES:

gmake <config name>-config CACTUS CONFIG FILES=<list of config files>

Multiple configuration files, with their file names separated by a ’:’ character, will be processed
in order. Each file should be given by its full path. The options file has the same format as
${HOME}/.cactus/config.

3 Add the options to a configuration file and use,

gmake <config name>-config options=<filename>

The options file has the same format as ${HOME}/.cactus/config. (Note that these options are
added to those from the ${HOME}/.cactus/config file.)

4 Pass the options individually on the command line,

gmake <config name>-config <option name>=<chosen value>, ...

Not all configuration options can be set on the command line. Those that can be set are indicated
in the table below.

Revision : 5127 B5/B25

B2.1. CONFIGURATION OPTIONS CHAPTER B2. COMPILATION

The options are listed here in order of increasing precedence, e.g. options set on the command line
will take priority over (potentially conflicting) options set in ${HOME}/.cactus/config or other Cactus
configuration files. Default options from ${HOME}/.cactus/config will only be read if the environment
variable CACTUS CONFIG FILES is not set.

It is important to note that these methods cannot be used to, for example, add options to the default
values for CFLAGS. Setting any variable in the configuration file or the command line will overwrite
completely the default values.

B2.1.1 Available Options

There is a plethora of available options.

• Cross compiling

If you are compiling on an architecture other than the one you are producing an executable for,
you will need to pass the

HOST MACHINE=x-x-x

option, where x-x-x is the canonical name of the architecture you are compiling for, such as
sx6-nec-superux; the format is processor-vendor-OS .

• Compiled thorns

These specify the chosen set of thorns for compilation. If the thorn choice is not provided during
configuration, a list containing all thorns in the arrangements directory is automatically created,
and the user is prompted for any changes.

THORNLIST Name of file containing a list of thorns with the syntax <arrangement name>/<thorn

name>. Lines beginning with # or ! are ignored.

THORNLIST DIR Location of directory containing THORNLIST. This defaults to the current
working directory.

• Compiler and tool specification

These are used to specify which compilers and other tools to use. Entries followed by * may be
specified on the command line.

CC * The C compiler.

CXX The C++ compiler.

CUCC * The CUDA compiler.

F90 * The Fortran compiler.

F77 * Ignored

CPP The preprocessor used to generate dependencies for and to preprocess C and
C++ code.

FPP The preprocessor used to generate dependencies for and to preprocess Fortran
code.

LD * The linker.

AR The archiver used for generating libraries.

Revision : 5127 B6/B25

B2.1. CONFIGURATION OPTIONS CHAPTER B2. COMPILATION

RANLIB The archive indexer to use.

MKDIR The program to use to create a directory.

PERL The name of the Perl executable.

• Output Directory

By default, Cactus generates intermediate and object files underneath a directory named “configs”
inside the Cactus directory. This location may be changed through the use of the CACTUS CONFIGS DIR

environment variable. See the section on File Layout B2.3.

• Compilation and tool flags

Flags which are passed to the compilers and the tools.

CFLAGS Flags for the C compiler.

CUCCFLAGS Flags for the CUDA compiler.

CXXFLAGS Flags for the C++ compiler.

F90FLAGS * Flags for the Fortran compiler.

F77FLAGS * Ignored

CPPFLAGS Flags for the preprocessor (used to generate compilation dependencies for and
preprocess C and C++ code).

FPPFLAGS Flags for the preprocessor (used to generate compilation dependencies for and
preprocess Fortran code).

MKDIRFLAGS Flags for MKDIR, so that no error is given if the directory exists.

LDFLAGS * Flags for the linker. Warning: This variable is ignored while the compilers
and linkers are autodetected. This can lead to strange errors while configur-
ing. You can pass the linker flags in the variable LD instead.

BEGIN WHOLE ARCHIVE FLAGS, END WHOLE ARCHIVE FLAGS

Optional set of flags for the linker that change the behaviour how archives are
handled. These flags are used just before and just after listing the flesh and
all thorn libraries. This mechanism can be used to force linking in all object
files from the flesh and all thorns, which can help detect duplicate definitions.
Otherwise, duplicate routines may go undetected.

ARFLAGS Flags for the archiver.

C LINE DIRECTIVES Whether error messages and debug information in the compiled C and C++
files should point to the original source file or to an internal file created by
Cactus. The only options available are yes and no, the default is yes. Set this
to no if your compiler reports error messages about unrecognised # directives.

F LINE DIRECTIVES Whether error messages and debug information in the compiled Fortran files
should point to the original source file or to an internal file created by Cactus.
The only options available are yes and no, the default is yes. Set this to no

if your compiler reports error messages about unrecognised # directives.

CROSS COMPILE Enables cross compilation. Available options are yes and no, the default is no.
To create a cross-compiled configuration one must explicitly set this option
to yes.

DISABLE REAL16 Disable support for the data type CCTK REAL16. The only options available
are yes and no, the default is no. Cactus autodetects this data type only for
C. If the C compiler supports it, but the Fortran compiler does not, it may be
necessary to disable CCTK REAL16 altogether, since Cactus assumes that data
types are fully supported if they exist.

Revision : 5127 B7/B25

B2.1. CONFIGURATION OPTIONS CHAPTER B2. COMPILATION

DEBUG * Specifies what type of debug mode should be used, the default is no debug-
ging. Current options are yes, no, or memory. The option yes switches on all
debugging features, whereas memory just employs memory tracing (Section
C1.9.3).

C DEBUG FLAGS Debug flags for the C compiler, their use depends on the type of debugging
being used.

CUCC DEBUG FLAGS Debug flags for the CUDA compiler, their use depends on the type of debug-
ging being used.

CXX DEBUG FLAGS Debug flags for the C++ compiler, their use depends on the type of debugging
being used.

F90 DEBUG FLAGS Debug flags for the Fortran 90 compiler, their use depends on the type of
debugging being used.

F77 DEBUG FLAGS Ignored.

OPTIMISE, OPTIMIZE

* Specifies what type of optimisation should be used. The only options cur-
rently available are yes and no. The default is to use optimisation.
Note that the British spelling OPTIMISE will be checked first and, if set, will
override any setting of the American-spelled OPTIMIZE.

C OPTIMISE FLAGS Optimisation flags for the C compiler, their use depends on the type of opti-
misation being used.

CUCC OPTIMISE FLAGS

Optimisation flags for the C compiler, their use depends on the type of opti-
misation being used.

CXX OPTIMISE FLAGS

Optimisation flags for the C++ compiler, their use depends on the type of
optimisation being used.

F90 OPTIMISE FLAGS

Optimisation flags for the Fortran 90 compiler, their use depends on the type
of optimisation being used.

F77 OPTIMISE FLAGS

Ignored.

C NO OPTIMISE FLAGS

Optimisation flags used to indicate that no optimisation should be performed.
These are invoked when OPTIMISE=no is used.

CUCC NO OPTIMISE FLAGS

Optimisation flags used to indicate that no optimisation should be performed.
These are invoked when OPTIMISE=no is used.

CXX NO OPTIMISE FLAGS

Optimisation flags used to indicate that no optimisation should be performed.
These are invoked when OPTIMISE=no is used.

F90 NO OPTIMISE FLAGS

Optimisation flags used to indicate that no optimisation should be performed.
These are invoked when OPTIMISE=no is used.

F77 NO OPTIMISE FLAGS

Ignored.

PROFILE * Specifies what type of profiling should be used. The only options currently
available are yes and no. The default is to use no profiling.

C PROFILE FLAGS Profile flags for the C compiler, their use depends on the type of profiling
being used.

Revision : 5127 B8/B25

B2.1. CONFIGURATION OPTIONS CHAPTER B2. COMPILATION

CUCC PROFILE FLAGS

Profile flags for the CUDA compiler, their use depends on the type of profiling
being used.

CXX PROFILE FLAGS Profile flags for the C++ compiler, their use depends on the type of profiling
being used.

F90 PROFILE FLAGS Profile flags for the Fortran 90 compiler, their use depends on the type of
profiling being used.

F77 PROFILE FLAGS Ignored.

WARN * Specifies what type of build warnings should be used. The only options
currently available are yes and no. The default is to produce no warnings.

C WARN FLAGS Warning flags for the C compiler, their use depends on the type of warnings
used during compilation (Section B2.4.4).

CUCC WARN FLAGS Warning flags for the CUCC compiler, their use depends on the type of warn-
ings used during compilation (Section B2.4.4).

CXX WARN FLAGS Warning flags for the C++ compiler, their use depends on the type of warnings
used during compilation (Section B2.4.4).

F90 WARN FLAGS Warning flags for the Fortran 90 compiler, their use depends on the type of
warnings used during compilation (Section B2.4.4).

F77 WARN FLAGS Ignored.

• Architecture-specific flags

IRIX BITS=32|64 For Irix SGI systems: whether to build a 32- or 64-bit configuration.

AIX BITS=32|64 For IBM SP systems: whether to build a 32- or 64-bit configuration.

• Library flags

Used to specify auxiliary libraries and directories to find them in.

LIBS Additional libraries. This variable can also contain linker options, e.g. to
switch between static and dynamic linking. (Cactus adds a -l prefix to library
names, but does not modify linker options.) Warning: This variable is ignored
while the compilers and linkers are autodetected. This can lead to strange
errors while configuring. You can pass the additional libraries in the variable
LD instead.

LIBDIRS Any other library directories. This variable can also contain linker options.
(Cactus adds an -L prefix to library directories, but does not modify linker
options.)

• Extra include directories

SYS INC DIRS Used to specify any additional directories for system include files.

• Precision options

Used to specify the precision of the default real and integer data types, by the number of bytes the
data takes up. Note that not all values will be valid on all architectures.

REAL PRECISION * Allowed values are 16, 8, 4.

INTEGER PRECISION * Allowed values are 8, 4, 2.

Revision : 5127 B9/B25

B2.2. COMPILING WITH EXTRA PACKAGES CHAPTER B2. COMPILATION

• Executable name

EXEDIR The directory in which to place the executable.

EXE The name of the executable.

• Extra packages

Compiling with extra packages is described fully in Section B2.2, which should be consulted for the
full range of configuration options.

MPI * The MPI package to use, if required. Supported values are CUSTOM, NATIVE,
MPICH, or LAM.

HDF5 DIR Used in connection with thorn ExternalLibraries/HDF5. Supported values
are BUILD, or a path pointing to an existing installation. The option HDF5 is
depreciated.

LAPACK DIR Used in connection with thorn ExternalLibraries/LAPACK. Supported val-
ues are BUILD, or a path pointing to an existing installation. The option
LAPACK is depreciated.

PETSC Supported values are yes, and no. A blank value is taken as no.

PTHREADS Supported values are yes, and no. A blank value is taken as no.

• Miscellaneous

PROMPT Setting this to no turns off all prompts from the make system.

VERBOSE Setting this to yes instructs gmake to print the commands that it is executing.

SILENT Setting this to no is an depreciated way of using VERBOSE = yes.

B2.2 Compiling with Extra Packages

B2.2.1 MPI: Message Passing Interface

The Message Passing Interface (MPI) provides inter-processor communication. It can either be imple-
mented natively on a machine (this is usual on most supercomputers), or through a standard package
such as MPICH, LAM, WMPI, or PACX.

To compile with MPI, the configure option is

MPI = <MPI TYPE>,

where <MPI TYPE> can take the values (entries followed by * may be specified on the configuration
command line):

CUSTOM For a custom MPI configuration set the variables

MPI LIBS * libraries.

MPI LIB DIRS * library directories.

MPI INC DIRS * include file directories.

Revision : 5127 B10/B25

B2.2. COMPILING WITH EXTRA PACKAGES CHAPTER B2. COMPILATION

NATIVE Use the native MPI for this machine, as indicated in the known-architectures

directory (lib/make/known-architectures).

MPICH Use MPICH (http://www-unix.mcs.anl.gov/mpi/mpich). This is controlled by
the options

MPICH ARCH * machine architecture.

MPICH DIR * directory in which MPICH is installed. If this option is not
defined, it will be searched for.

MPICH DEVICE * the device used by MPICH. If not defined, the configura-
tion process will search for this in a few defined places. Sup-
ported devices are currently ch p4, ch shmem, globus and
myrinet. For versions of MPICH prior to 1.2.0, the devices
are searched for in this order, for 1.2.0 you may need to spec-
ify MPICH DEVICE, depending on the installation.

If MPICH DEVICE is chosen to be globus (http://www.globus.org), an additional
variable must be set

GLOBUS LOCATION * directory in which Globus is installed.

The Globus flavor may be chosen optionally

GLOBUS FLAVOR * Globus flavor to build Cactus with.

If it is not set, the first Globus flavor found will be used.

If MPICH DEVICE is chosen to be ch gm, (http://www.myri.com), an additional
variable must be set

MYRINET DIR * directory in which Myrinet libraries are installed.

LAM Use LAM (Local Area Multicomputer, http://www.lam-mpi.org/). This is con-
trolled by the variables

LAM DIR * directory in which LAM is installed. This will be searched
for in a few provided places if not given.

If the LAM installation splits libraries and include files into different directories,
instead of setting LAM DIR set the two variables

LAM LIB DIR * directory in which LAM libraries are installed.

LAM INC DIR * directory in which LAM include files are installed.

WMPI Use WMPI (Win32 Message Passing Interface, http://dsg.dei.uc.pt/w32mpi/
intro.html). This is controlled by the variable

WMPI DIR * directory in which WMPI is installed.

HPVM Use HPVM (High Performance Virtual Machine, (http://www-csag.ucsd.edu/
projects/hpvm.html). This is controlled by the variable

HPVM DIR * directory in which HPVM is installed.

MPIPro Use MPIPro (http://www.mpi-softtech.com/).

PACX Use the PACX Metacomputing package (PArallel Computer eXtension,
http://www.hlrs.de/structure/organisation/par/projects/pacx-mpi/). This
is controlled by the variables

Revision : 5127 B11/B25

http://www-unix.mcs.anl.gov/mpi/mpich
http://www.globus.org
http://www.myri.com
http://www.lam-mpi.org/
http://dsg.dei.uc.pt/w32mpi/intro.html
http://dsg.dei.uc.pt/w32mpi/intro.html
http://www-csag.ucsd.edu/projects/hpvm.html
http://www-csag.ucsd.edu/projects/hpvm.html
http://www.mpi-softtech.com/
http://www.hlrs.de/structure/organisation/par/projects/pacx-mpi/

B2.2. COMPILING WITH EXTRA PACKAGES CHAPTER B2. COMPILATION

PACX DIR * directory in which PACX is installed. If this option is not
defined, it will be searched for.

PACX MPI * the MPI package PACX uses node-local communication.
This can be any of the above MPI packages.

Note that the searches for libraries, etc. mentioned above use the locations given in the files in lib/make/extras/MPI.

B2.2.2 HDF5: Hierarchical Data Format version 5

To compile with HDF5 (http://hdf.ncsa.uiuc.edu/whatishdf5.html), include thorn ExternalLibraries/HDF5

in your thornlist, and use the configure option

HDF5 DIR = BUILD/<dir> [LIBZ DIR = <dir>] [LIBSZ DIR = <dir>]

If HDF5 DIR is not given, the configuration process will search for an installed HDF5 package in some
standard places. If HDF5 DIR is set to BUILD an HDF5 installation will be build. If the found HDF5
library was built with the external deflate I/O filter, the configuration process also searches for the libz

library and adds it to the linker flags. You may also point directly to the location of libz.a by setting
LIBZ DIR. If the found HDF5 library was built with the external szlib I/O filter, the configuration
process also searches for the szlib library and adds it to the linker flags. You may also point directly to
the location of libsz.a by setting LIBSZ DIR. Note that the option HDF5 = yes/no is depreciated and
does not work with thorn ExternalLibraries/HDF5.

B2.2.3 LAPACK: Linear Algebra PACKage

To compile with LAPACK (http://www.netlib.org/lapack/), include thorn ExternalLibraries/LAPACK

in your thornlist, and use the configure option

[LAPACK DIR = BUILD | <dir>]

[LAPACK EXTRA LIBS DIRS = <dir>]

[LAPACK LIBS = <libs>]

[LAPACK EXTRA LIBS = <libs>]

If LAPACK DIR is not given, the configuration process will search for a LAPACK library liblapack.[{a,so}]
in some standard places. If LAPACK DIR is set to BUILD, a Lapack installation will be build.

B2.2.4 PETSc: Portable, Extensible Toolkit for Scientific Computation

To compile with PETSc (http://www-unix.mcs.anl.gov/petsc/petsc-2/index.html), the configure
options are

PETSC = yes | no | <blank>

[PETSC DIR = <dir>]

[PETSC ARCH = <architecture>]

[PETSC ARCH LIBS = <architecture-specific libraries>]

Revision : 5127 B12/B25

http://hdf.ncsa.uiuc.edu/whatishdf5.html
http://www.netlib.org/lapack/
http://www-unix.mcs.anl.gov/petsc/petsc-2/index.html

B2.3. FILE LAYOUT CHAPTER B2. COMPILATION

If PETSC DIR is not given, the configuration process will search for an installed PETSc package in some
standard places (defined in lib/make/extras/PETSC). If PETSC ARCH is not given, the configuration
process will choose the first PETSc configuration found in $PETSC DIR/lib/libO/. If PETSC ARCH LIBS

is not given, the configuration process will choose architecture-specific libraries, as required by a PETSc
configuration (usually PETSc needs the LAPACK library).

B2.2.5 Pthreads: POSIX threads

To enable multithreading support within Cactus using POSIX threads, the configure option is

PTHREADS = yes

The configuration process will check if a reentrant C library is available, and adds it to the linker
flags. It will also search for the system’s Pthreads library (either libpthread or libpthreads), and set
preprocessor defines necessary for compiling multithreaded code.

B2.3 File Layout

The configuration process sets up various subdirectories and files in the configuration directory (this
is either a directory configs insde the main Cactus directory, or the directory pointed to by the
CACTUS CONFIGS DIR environment variable). to contain the configuration specific files; these are placed
in a directory with the name of the configuration.

config-data contains the files created by the configure script:

The most important ones are

make.config.defn contains compilers and compilation flags for a configuration.

make.extra.defn contains details about extra packages used in the configura-
tion.

cctk Config.h The main configuration header file, containing architecture
specific definitions.

cctk Archdefs.h An architecture specific header file containing things which
cannot be automatically detected, and have thus been hand-
coded for this architecture.

These are the first files which should be checked or modified to suit any peculiarities
of this configuration.

In addition, the following files may be informative:

fortran name.pl A Perl script used to determine how the Fortran compiler
names subroutines. This is used to make some C routines
callable from Fortran, and Fortran routines callable from C.

make.config.deps Initially empty. It can be edited to add extra architecture
specific dependencies needed to generate the executable.

make.config.rule The make rules for generating object files from source files.

Finally, autoconf generates the following files.

Revision : 5127 B13/B25

B2.4. BUILDING AND ADMINISTERING A CONFIGURATION CHAPTER B2. COMPILATION

config.log A log of the autoconf process.

config.status A script which may be used to regenerate the configuration.

config.cache An internal file used by autoconf.

lib An empty directory which will contain the libraries created for each thorn.

build An empty directory which will contain the object files generated for this configura-
tion, and preprocessed source files.

config-info A file containing information about the configuration (including the options used
to configure the configuration).

bindings A directory which contains all the files generated by the CST from the .ccl files.

scratch A scratch directory which is used to accommodate Fortran 90 modules.

B2.4 Building and Administering a Configuration

Once you have created a new configuration, the command

gmake <configuration name>

will build an executable, prompting you along the way for the thorns which should be included. There is
a range of gmake targets and options which are detailed in the following sections.

B2.4.1 gmake Targets for Building and Administering Configurations

A target for gmake can be naively thought of as an argument that tells it which of several things listed
in the Makefile it is to do. The command gmake help lists all gmake targets:

gmake <config> builds a configuration. If the configuration doesn’t exist, it will create it.

gmake <config>-clean

removes all object and dependency files from a configuration.

gmake <config>-cleandeps

removes all dependency files from a configuration.

gmake <config>-cleanobjs

removes all object files from a configuration.

gmake <config>-config

creates a new configuration or reconfigures an existing one overwriting any previous
configuration options.
The configuration options are stored in a file configs/<config>/config-info.

gmake <config>-configinfo

displays the options of the configuration (cat configs/<config>/config-info).

gmake <config>-delete

deletes a configuration (rm -r configs/<config>).

Revision : 5127 B14/B25

B2.4. BUILDING AND ADMINISTERING A CONFIGURATION CHAPTER B2. COMPILATION

gmake <config>-editthorns

edits the ThornList.

gmake <config>-examples

copies all the example parameter files relevant for this configuration to the directory
examples in the Cactus home directory. If a file of the same name is already there,
it will not overwrite it.

gmake <config>-realclean

removes from a configuration all object and dependency files, as well as files gen-
erated from the CST (stands for Cactus Specification Tool, which is the set of
Perl scripts which parse the thorn configuration files). Only the files generated by
configure and the ThornList file remain.

gmake <config>-rebuild

rebuilds a configuration (reruns the CST).

gmake <config>-reconfig

reconfigures an existing configuration using its previous configuration options from
the file configs/<config>/config-info.

gmake <config>-testsuite

runs the test programs associated with each thorn in the configuration. See section
B2.6 for information about the test suite mechanism.

gmake <config>-ThornGuide

builds documentation for the thorns in this configuration (see section B2.5, page
B17, for other targets to build documentation for thorns).

gmake <config>-thornlist

regenerates the ThornList for a configuration.

gmake <config>-utils [UTILS=<list>]

builds all utility programs provided by the thorns of a configuration. Individual
utilities can be selected by giving their names (ie. name of the source file without
extension) in the UTILS variable.

B2.4.2 Compiling in Thorns

Cactus will try to compile all thorns listed in configs/<config>/ThornList. The ThornList file is
simply a list of the form <arrangement>/<thorn>. All text after a pound sign ‘#’ or exclamation mark
‘!’ on a line is treated as a comment and ignored. If you did not specify a ThornList already, the first
time that you compile a configuration you will be shown a list of all the thorns in your arrangement
directory, and asked if you with to edit them. You can regenerate this list at anytime by typing

gmake <config>-thornlist

,

or you can edit it using

gmake <config>-editthorns

Revision : 5127 B15/B25

B2.5. OTHER GMAKE TARGETS CHAPTER B2. COMPILATION

.

Instead of using the editor to specify the thorns you want to have compiled, you can edit the ThornList

outside the make process. It is located in configs/<config>/ThornList, where <config> refers to the
name of your configuration. The directory ./configs exists after the very first make phase for the first
configuration.

B2.4.3 Notes and Caveats

• If during the build you see the error “missing separator”, you are probably not using GNU make.

• The EDITOR environment variable. You may not be aware of this, but this thing very often exists
and, may be set by default to something scary like vi. If you don’t know how to use vi, or wish to
use your favorite editor instead, reset this environment variable. (To exit vi type <ESC> :q!)

B2.4.4 gmake Options for building configurations

An option for gmake can be thought of as an argument which tells it how it should make a target. Note
that the final result is always the same.

gmake <target> PROMPT=no

turns off all prompts from the make system.

gmake <target> SILENT=no

prints the commands that gmake is executing.

gmake <target> WARN=yes

shows compiler warnings during compilation.

gmake <target> FJOBS=<number>

compiles in parallel, across files within each thorn.

gmake <target> TJOBS=<number>

compiles in parallel, across thorns.

Note that with more modern versions of gmake, it is sufficient to pass the normal -j <number> flag to
gmake to get parallel compilation.

B2.5 Other gmake Targets

gmake help lists all make options.

gmake checkout allows you to easily checkout Cactus arrangements and thorns. For example, it can
checkout all the thorns in any thornlist file found in the thornlists subdirectory
of the Cactus root directory.

gmake configinfo prints configuration options for every configuration found in user’s configs subdi-
rectory.

gmake default creates a new configuration with a default name.

Revision : 5127 B16/B25

B2.6. TESTING CHAPTER B2. COMPILATION

gmake distclean deletes your configs directory, and hence all your configurations.

gmake downsize removes non-essential files as documents and test suites to allow for minimal instal-
lation size.

gmake newthorn creates a new thorn, prompting for the necessary information and creating template
files.

gmake TAGS creates an Emacs style TAGS file. See section D8 for using tags within Cactus.

gmake tags creates a vi style tags file. See section D8 for using tags within Cactus.

Targets to generate Cactus documentation:

gmake <arrangement>-ArrangementDoc

builds the documentation for the arrangement.

gmake ArrangementDoc

builds the documentation for all arrangements.

gmake MaintGuide runs LaTeX to produce a copy of the Maintainers’ Guide.

gmake ReferenceManual

runs LaTeX to produce a copy of the Reference Manual.

gmake <thorn>-ThornDoc

builds the documentation for the thorn.

gmake ThornDoc builds the documentation for all thorns.

gmake UsersGuide runs LaTeX to produce a copy of the Users’ Guide.

gmake AllDoc creates all of the above documentations.

B2.6 Testing

Some thorns come with a test suite, consisting of example parameter files and the output files generated
by running these. To run the test suite for the thorns you have compiled use

gmake <configuration>-testsuite

These test suite serve the dual purpose of

Regression testing i.e. making sure that changes to the thorn or the flesh don’t affect the output from
a known parameter file.

Portability testing i.e. checking that the results are independent of the architecture—this is also of
use when trying to get Cactus to work on a new architecture.

Revision : 5127 B17/B25

Chapter B3

Runtime options

This chapter covers all aspects for running your Cactus executable. These include: command-line op-
tions, parameter file syntax, understanding screen output, environment variables, and creating thorn
documentation.

B3.1 Command-Line Options

Cactus uses the standard GNU style of long-named command-line options; many of these options also
have traditional Unix single-letter short forms. The options follow the usual GNU rules:

• A long-named option --foo which takes an argument bar may be written as either --foo bar or
as --foo=bar.

• A long-named option may be abbreviated, so long as the abbreviation is unambiguous.

• The preferred way of spelling a long-named option is --foo, but -foo also accepted, though this is
deprecated.

• A short option, -X, which takes an argument bar may be written as either -Xbar or as -X=bar.

• An option which can be interpreted as either a short option, or as an abbreviated -foo-style
long option, is interpreted as the former. In particular, -re is interpreted as an abbreviation for
-redirect, rather than as -r=e.

The Cactus command-line options are specified in Table B3.1, and are as follows:

-O or --describe-all-parameters
Prints a full list of all parameters from all thorns which were compiled, along with
descriptions and allowed values. This can take an optional extra parameter v (i.e.
-Ov to give verbose information about all parameters).

-o<param> or --describe-parameter=<param>
Prints the description and allowed values for a given parameter—takes one argu-
ment.

Revision : 5127 B18/B25

B3.1. COMMAND-LINE OPTIONS CHAPTER B3. RUNTIME OPTIONS

Short Version Long Version

-O[v] --describe-all-parameters

-o<param> --describe-parameter=<param>

-S --print-schedule

-T --list-thorns

-t<arrangement/thorn> --test-thorn-compiled=<arrangement/thorn>

-h,-? --help

-v --version

-L<level> --logging-level=<level>

-W<level> --warning-level=<level>

-E<level> --error-level=<level>

-r[o|e|oe|eo] --redirect=[o|e|oe|eo]

--logdir=<directory>

-b[no|line|full] --buffering=[no|line|full]

--parameter-level=<strict|normal|relaxed>

-i --ignore-next

Table B3.1: This table shows all the Cactus command-line options.

-S or --print-schedule
Print only the schedule tree.

-T or --list-thorns
Prints a list of all the thorns which were compiled in.

-t<arrangement or thorn> or --test-thorn-compiled=<arrangement or thorn>

Checks if a given thorn was compiled in—takes one argument.

-h, -? or --help Prints a help message.

-v or --version Prints version information of the code.

-L<level> or --logging-level=<level>
Sets the logging level of the code. All warning messages are given a level—the lower
the level the greater the severity. This parameter -L controls the level of messages
to be seen, with all warnings of level ≤ <level> printed to standard output. The
default is a logging level of 0, meaning that only level 0 messages should be printed
to standard output.

-W<level> or --warning-level=<level>
Similar to -W, but for standard error instead of standard output. All warnings of
level ≤ <level> are printed to standard error. The default is a warning level of 1,
meaning that level 0 and level 1 messages should be printed to standard error.

-E<level> or --error-level=<level>
Similar to -W, but for fatal errors: Cactus treats all warnings with level ≤ <level>

as fatal errors, and aborts the Cactus run immediately (after printing the warning
message1). The default value is zero, i.e. only level 0 warnings will abort the Cactus
run.

-r[o|e|oe|eo] or --redirect=[o|e|oe|eo]
Redirects the standard output (‘o’) and/or standard error (‘e’) of each processor
to a file. By default, the standard outputs from processors other than processor 0
are discarded.

1Cactus imposes the constraint, -W level ≥ -E level ≥ 0, so any fatal-error message will always be printed (first).

Revision : 5127 B19/B25

B3.2. PARAMETER FILE SYNTAX CHAPTER B3. RUNTIME OPTIONS

--logdir=<directory>

Sets the output directory for logfiles created by the -r option. If the directory
doesn’t exist yet, it will be created by Cactus.

-b[no|line|full] or --buffering=[no|line|full]
Set the stdout buffering mode. Buffered I/O is a standard feature of C pro-
grammes. This delays writing the actual output; instead, the output is collected
into an internal buffer, and is then written in large chunks. This improves per-
formance considerably. Line buffering means that output is written whenever a
newline character is encountered; full buffering means that output is written, say,
once 1000 characters have accmulated. The default setting is line buffering for I/O
that goes to a terminal, and full buffering for I/O that goes to a file. For debugging
purposes, it is sometimes useful to reduce the amount of buffering. Error mes-
sages, i.e. the stderr stream, is always unbuffered (and hence usually slower than
stdout).

--parameter-level=<strict|normal|relaxed>

Sets the level of parameter checking to be used, one of strict (the default), normal,
or relaxed. See Section B3.2 for details.

-i or --ignore-next
Causes the next argument on the command line to be ignored.

A dash (“-”) appended at the end of the command line like this:

./cactus <config> [command-line options] -

lets the user specify parameter values from standard input rather than from a parameter file.

B3.2 Parameter File Syntax

A parameter file (or par file) is used to control the behaviour of a Cactus executable. It specifies initial
values for parameters as defined in the various thorns’ param.ccl files (see Chapter C1.4). The name of
a parameter file is often given the suffix .par, but this is not mandatory.

A parameter file is a text file whose lines are either comments or parameter statements. Comments are
blank lines or lines that begin with ‘#’. A parameter statement consists of one or more parameter names,
followed by an ‘=’, followed by the value(s) for this (these) parameter(s). Note that all string parameters
are case insensitive.

Parameters statements of numeric or boolean type can use arithmetic expressions in place of explicit
values. The usual arithmetic operations as well as C-like transcendental functions and relational oper-
ations are supported. Integer division is handled as in C. Logical comparisons and variables expect a
boolean type, but any non-null value is interpreted as logical true (although a warning is generated). The
exponentiation operator ** is supported, but can only apply to two values. The expression 3**4**2 is
not supported, but (3**4)**2 or 3**(4**2) is supported. Operator precedence follows the C language,
but when in doubt use explicit parenthesis to force a desired order of evaluation. Table B3.2 lists the
supported functions. Expressions can refer to parameters which are already set by using the fully qualified
name thorn::parameter as described below.

Arrays of parameters can be set by including an integer expression inside the square brackets following
the name, e.g. thorn::parameters[0]. Optionally, an array of parameters may be set by means of a
comma delimted list of values inside square brackets. E.g. the following two examples are equivalent.

Revision : 5127 B20/B25

B3.2. PARAMETER FILE SYNTAX CHAPTER B3. RUNTIME OPTIONS

Example 1:

thorn::parameters[0] = 4.8

thorn::parameters[1] = 3.2

Example 2:

thorn::parameters = [4.8, 3.2]

The parameter parser knows about four types: integers, reals, booleans, and strings. The % operator is
applicable only to ints. In cases where this is clear, types will be converted, e.g. 3.0 will convert to an
integer, but not 3.1. If you wish to prevent the parser from evaluating an expression, you can put it in
double quotes and make it a string.

Please see the file par.peg in the directory Cactus/src/piraha/pegs for the full grammar describing
the par file.

Logical operators + no-op
&& logical and ! logical not
|| logical or Mathematical functions

Relational operators acos inverse cosine
== tests for equality asin inverse sine
!= tests for inequality atan inverse tangent
< tests for less than ceil round up to nearest integer
> tests for greater than cos cosine
<= tests for less or equal cosh hyperbolic cosine
>= tests for greater or equal exp exponentiation ex

Binary operators abs absolute value |x|
+ addition floor round down to nearest integer
- subtraction log natural logarithm
/ C-like division bool,int,real convert to bool, int, or real
% remainder of division sin sine
* multiplication sinh hyperbolic sine
** exponentiation xy sqrt square root

Unary operators tan tangent
- negate sign tanh hyperbolic tangent

trunc integer part of x

Table B3.2: Supported functions inside of expressions, in increasing order of precedence.

The first parameter statement in any parameter file should set ActiveThorns, which is a special parameter
that tells the program which thorns are to be activated. However, one may set ActiveThorns on any
line or lines of the par file. In the case where multiple specifications of ActiveThorns are supplied, the
values will be concatenated.

Only parameters belonging to active thorns can be set (and only those routines scheduled by active thorns
are run). By default, all thorns are inactive. For example, the first entry in a parameter file which is
using just the two thorns CactusPUGH/PUGH and CactusBase/CartGrid3D should be

ActiveThorns = "PUGH CartGrid3D"

Revision : 5127 B21/B25

B3.2. PARAMETER FILE SYNTAX CHAPTER B3. RUNTIME OPTIONS

All parameters following the ActiveThorns parameter have names whose syntax depends on the scope
(see Section C1.4.2) of the parameter:

Restricted parameters

The name of the implementation which defined the parameter, followed by two
colons, then the name of the parameter—e.g. driver::global nx.

Private parameters

The name of the thorn which defined the parameter, two colons, and the name of
the parameter—e.g. wavetoyF77::amplitude.

This notation is not currently strictly enforced in the code. It is sufficient to specify the first part of
the parameter name using either the implementation name, or the thorn name. However, we recommend
that the above convention be followed.

The Cactus flesh performs checks for consistency and range of parameters. The severity of these checks
is controlled by the command-line argument --parameter-level, which can take the following values

relaxed Cactus will issue a level 0 warning (that is, the default behaviour will be to termi-
nate) if

• The specified parameter value is outside of the allowed range.

normal This is the default, and provides the same warnings as the relaxed level, with the
addition of a level 0 warning issued for

• An implementation and/or thorn foo is active, but the parameter foo::bar

was not defined.

• The parameter foo::bar was successfully set for both an active implementa-
tion foo not implemented by a thorn foo, and to a thorn foo.

strict This provides the same warnings as the normal level, with the addition of a level 0
warning issued for

• The parameter foo::bar is specified in the parameter file, but no implemen-
tation or thorn with the name bar is active.

Notes:

• You can obtain lists of the parameters associated with each thorn using the command-line options
-o and -O (Section B3.1).

• The parameter file is read sequentially from top to bottom, this means that if you set the value of a
parameter twice in the parameter file, the second value will be used. (This is why the ActiveThorns
parameter is always first in the file).

• String parameter values can be specified either as unquoted tokens (not containing any whitespace),
or as quoted values. If a quoted string parameter value spans multiple lines, all whitespaces,
including newline characters, are preserved.

• Some parameters are steerable, and can be changed during the execution of a Cactus program using
parameter steering interfaces, for example, thorn CactusConnect/HTTPD, or using a parameter file
when recovering from a checkpoint file.

• For examples of parameter files, look in the par directory contained in most thorns.

Revision : 5127 B22/B25

B3.3. THORN DOCUMENTATION CHAPTER B3. RUNTIME OPTIONS

B3.3 Thorn Documentation

The Cactus make system provides a mechanism for generating a Thorn Guide containing separate chapters
for each thorn and arrangement in your configuration. The documentation provided for an individual
thorn, obviously depends on what the thorn authors added, but the Thorn Guide is a good place to
first look for special instructions on how to run and interpret the output from a thorn. Details about
parameters, grid variables and scheduling are automatically read from a thorn’s CCL files and included
in the Thorn Guide. To construct a Thorn Guide for the configuration <config> use

gmake <config>-ThornGuide

or to make a Thorn Guide for all the thorns in the arrangements directory

gmake <config>.

See Section C1.8.4 for a guide to adding documentation to your own thorns.

Revision : 5127 B23/B25

Chapter B4

Getting and Looking at Output

B4.1 Screen Output

As your Cactus executable runs, standard output and standard error are usually written to the screen.
Standard output provides you with information about the run, and standard error reports warnings and
errors from the flesh and thorns.

As the program runs, the normal output provides the following information:

Active thorns A report is made as each of the thorns in the ActiveThorns parameters from the
parameter file (see Section B3.2) is attempted to be activated. This report shows
whether the thorn activation was successful, and if successful, gives the thorn’s
implementation. For example

Activating thorn idscalarwave...Success -> active implementation idscalarwave

Failed parameters If any of the parameters in the parameter file does not belong to any of the active
thorns, or if the parameter value is not in the allowed range (see Section C1.4.1),
an error is registered. For example, if the parameter is not recognised,

Unknown parameter time::ddtfac

or if the parameter value is not in the allowed range,

Unable to set keyword CartGrid3D::type - ByMouth not in any active range

Scheduling information
The scheduled routines (see Section C1.5) are listed, in the order that they will be
executed. For example,

--

Startup routines

Cactus: Register banner for Cactus

CartGrid3D: Register GH Extension for GridSymmetry

Revision : 5127 B24/B25

B4.2. OUTPUT CHAPTER B4. GETTING AND LOOKING AT OUTPUT

CartGrid3D: Register coordinates for the Cartesian grid

IOASCII: Startup routine

IOBasic: Startup routine

IOUtil: IOUtil startup routine

PUGH: Startup routine

WaveToyC: Register banner

Parameter checking routines

CartGrid3D: Check coordinates for CartGrid3D

IDScalarWave: Check parameters

Initialisation

CartGrid3D: Set up spatial 3D Cartesian coordinates on the GH

PUGH: Report on PUGH set up

Time: Set timestep based on speed one Courant condition

WaveToyC: Schedule symmetries

IDScalarWave: Initial data for 3D wave equation

do loop over timesteps

WaveToyC: Evolution of 3D wave equation

t = t+dt

if (analysis)

endif

enddo

--

Thorn banners Usually a thorn registers a short piece of text as a banner. The banner of each
thorn is displayed in the standard output when the thorn is initialised.

B4.2 Output

Output methods in Cactus are all provided by thorns. Any number of output methods can be used for
each run. The behaviour of the output thorns in the standard arrangements are described in those thorns’
documentation.

In general, output thorns decide what to output by parsing a string parameter containing the names
of those grid variables, or groups of variables, for which output is required. The names should be fully
qualified with the implementation and group or variable names.

There is usually a parameter for each method to denote how often, in evolution iterations, this output
should be performed. There is also usually a parameter to define the directory in which the output should
be placed, defaulting to the directory from which the executable is run.

See Chapter C2.7 for details on creating your own I/O method.

Revision : 5127 B25/B25

Part C

Thorn Writing

C1 C1/C82

C2

C2 C2/C82

Chapter C1

Application thorns

This chapter goes into the nitty-gritty of writing a thorn. It introduces key concepts for thorns, then
goes on to give a brief outline of how to configure a thorn. There is then some detail about concepts
introduced by the configuration step, followed by discussion of code which you must put into your files in
order to use Cactus functionality, and details of utility functions you may use to gain extra functionality.

C1.1 Thorn Concepts

C1.1.1 Thorns

A thorn is the basic working module within Cactus. All user supplied code goes into thorns, which are,
by and large, independent of each other. Thorns communicate with each other via calls to the flesh API,
plus, more rarely, custom APIs of other thorns.

The connection from a thorn to the flesh, or to other thorns, is specified in configuration files which are
parsed at compile time and used to generate glue code which encapsulates the external appearance of a
thorn.

Thorn names must be (case independently) unique, must start with a letter, can only contain letters,
numbers or underscores, and must contain 27 characters or less. In addition, a thorn cannot have the
name doc, this is reserved for arrangement documentation. Arrangement names which start with a ‘#’,
or finish with ‘~’ or ‘.bak’ will be ignored.

C1.1.2 Arrangements

Thorns are grouped into arrangements. This is a logical grouping of thorns which is purely for organi-
sational purposes. For example, you might wish to keep all your initial data thorns in one arrangement,
and all your evolution thorns in another arrangement, or you may want to have separate arrangements
for your developments, private and shared thorns.

The arrangements live in the arrangements directory of the main Cactus directory. Arrangement names
must be (case independently) unique, must start with a letter, and can only contain letters, numbers or

C3 C3/C82

C1.2. ANATOMY OF A THORN CHAPTER C1. APPLICATION THORNS

underscores. Arrangement names which start with a ‘#’, or finish with ‘~’ or ‘.bak’ will be ignored.

Inside an arrangement directory there are directories for each thorn belonging to the arrangement.

C1.1.3 Implementations

One of the key concepts for thorns is the concept of the implementation. Relationships among thorns are
all based upon relationships among the implementations they provide. In principle, it should be possible
to swap one thorn providing an implementation with another thorn providing that implementation,
without affecting any other thorn.

An implementation defines a group of variables and parameters which are used to implement some
functionality. For example, the thorn CactusPUGH/PUGH provides the implementation driver. This
implementation is responsible for providing memory for grid variables and for communication. Another
thorn can also implement driver, and both thorns can be compiled in at the same time. At runtime, the
user can decide which thorn providing driver is used. No other thorn should be affected by this choice.

When a thorn decides it needs access to a variable or a parameter provided by another thorn, it defines a
relationship between itself and the other thorn’s implementation, not explicitly with the other thorn. This
allows the transparent replacement, at compile or runtime, of one thorn with another thorn providing
the same functionality as seen by the other thorns.

C1.2 Anatomy of a Thorn

C1.2.1 Thorns

A thorn consists of a subdirectory of an arrangement containing four administrative files:

interface.ccl the Cactus interface, which defines the grid functions, variables, etc. See Appendix
D2.2.

param.ccl the parameters introduced by this thorn, and the parameters needed from other
thorns. See Appendix D2.3.

schedule.ccl scheduling information for routines called by the flesh. See Appendix D2.4.

configuration.ccl configuration options for the thorn. See Appendix D2.5.

Thorns can also contain

• a subdirectory called src, which should hold source files and compilation instructions for the thorn

• a subdirectory src/include for include files

• a README containing a brief description of the thorn

• a doc directory for documentation

• a par directory for example parameter files

• a test subdirectory may also be added, to hold the thorn’s test suite. See Section C1.8.5 for details.

C4 C4/C82

C1.2. ANATOMY OF A THORN CHAPTER C1. APPLICATION THORNS

C1.2.2 Creating a Thorn

To simplify the creation of a thorn, a make target gmake newthorn has been provided. When this is run:

1. You will be prompted for the name of the new thorn.

2. You will be prompted for the name of the arrangement in which you would like to include your
thorn. Either enter a new arrangement name or pick one from the list of available arrangements
that are shown.

C1.2.3 Configuring your Thorn

The interaction of a thorn with the flesh and other thorns is controlled by certain configuration files.

These are:

interface.ccl This defines the implementation (Section C1.1.3) the thorn provides, and the vari-
ables the thorn needs, along with their visibility to other implementations.

param.ccl This defines the parameters that are used to control the thorn, along with their
visibility to other implementations.

schedule.ccl This defines which functions are called from the thorn and when they are called. It
also handles memory and communication assignment for grid variables.

configuration.ccl This file is optional for a thorn. If it exists, it contains extra configuration options
of this thorn.

General Syntax of CCL Files

Cactus Configuration Language (CCL) files are simple text files used to define configuration information
for a thorn. CCL files are case independent, and may contain comments introduced by the hash ‘#’
character, which indicates that the rest of the line is a comment. If the last non-blank character of a line
in a CCL file is a backslash ‘\’, the following line is treated as a continuation of the current line.

The interface.ccl File

The interface.ccl file is used to declare

• the implementation provided by the thorn

• the variables provided by the thorn

• the include files provided by the thorn

• the functions provided by the thorn (in development)

The implementation is declared by a single line at the top of the file

C5 C5/C82

C1.2. ANATOMY OF A THORN CHAPTER C1. APPLICATION THORNS

implements: <name>

Where <name> can be any combination of alphanumeric characters and underscores, and is case indepen-
dent.

There are three different access levels available for variables

Public Can be ‘inherited’ by other implementations (see below).

Protected Can be shared with other implementations which declare themselves to be friends
of this one (see below).

Private Can only be seen by this thorn.

Corresponding to the first two access levels there are two relationship statements that can be used to get
variables (actually groups of variables, see below) from other implementations.

Inherits: <name>

This gets all Public variables from implementation <name>, and all variables that
<name> has in turn inherited. An implementation may inherit from any number of
other implementations.

Friend: <name> This gets all Protected variables from implementation <name>, but, unlike inherits,
it is symmetric and also defines a transitive relation by pushing its own implemen-
tation’s Protected variables onto implementation name. This keyword is used to
define a group of implementations which all end up with the same Protected vari-
ables.

So, for example, an interface.ccl starting

implements: wavetoy

inherits: grid

friend: wave_extract

declares that the thorn provides an implementation called wavetoy, gets all the public variables declared
by an implementation called grid, and shares all protected variables with wave extract and its friends.

Cactus variables, described in Chapter C1.3, are placed in groups with homogeneous attributes, where
the attributes describe properties such as the data type, group type, dimension, ghostsize, number of
timelevels, and distribution.

For example, a group, called realfields of 5 real grid functions (phi, a, b, c, d), on a 3D grid, would
be defined by

CCTK_REAL realfields type=GF TimeLevels=3 Dim=3

{

phi

a,b,c,d

} "Example grid functions"

C6 C6/C82

C1.2. ANATOMY OF A THORN CHAPTER C1. APPLICATION THORNS

or, for a group called intfields consisting of just one distributed 2D array of integers,

CCTK_INT intfields type=ARRAY size=xsize,ysize ghostsize=gxsize,gysize dim=2

{

anarray

} "My 2D arrays"

where xsize, ysize, gxsize, gysize are all parameters defined in the thorn’s param.ccl.

By default, all groups are private, to change this, an access specification of the form public: or
protected: (or private: to change it back) may be placed on a line by itself. This changes the access
level for any group defined in the file from that point on.

All variables seen by any one thorn must have distinct names.

The param.ccl File

Users control the operation of thorns via parameters given in a file at runtime. The param.ccl file is used
to specify the parameters used to control an individual thorn, and to specify the values these parameters
are allowed to take. When the code is run, it reads a parameter file and sets the parameters if they fall
within the allowed values. If a parameter is not assigned in a parameter file, it is given its default value.

There are three access levels available for parameters:

Global These parameters are seen by all thorns.

Restricted These parameters may be used by other implementations if they so desire.

Private These are only seen by this thorn.

A parameter specification consists of:

• The parameter type (each may have an optional CCTK in front)

REAL

INT

KEYWORD A distinct string with only a few known allowed values.

STRING An arbitrary string, which must conform to a given regular expression.

BOOLEAN A boolean type which can take values 1, t, true, yes or 0, f, false, no.

• The parameter name

• An optional size (in square brackets)–if this is present, the parameter is a “parameter array”, i.e.
it will actually be an array of parameters, each of which has the same properties, but a different
value. Such arrays appear as normal arrays in C or Fortran, 0-based in C, and 1-based in Fortran.
In the parameter file the value of each element is specified with square brackets and is 0-based. The
size must be an integer.

• A description of the parameter

C7 C7/C82

C1.2. ANATOMY OF A THORN CHAPTER C1. APPLICATION THORNS

• An allowed value block–this consists of a brace-delimited block of lines1 describing the allowed
values of the parameter. Each range may have a description associated with it by placing a :: on
the line, and putting the description afterwards.

• The default value–this must be one of the allowed values.

For the numeric types INT and REAL, a range consists of a string of the form lower-bound:upper-
bound:step, where a missing number or an asterisk ‘*’ denotes anything (i.e. infinite bounds or an
infinitesimal step).

For example,

REAL Coeff "Important coefficient"

{

0:3.14 :: "Range has to be from zero to Pi, default is zero"

} 0.0

#No need to define a range for BOOLEAN

BOOLEAN nice "Nice weather?"

{

}"yes"

A example for a set of keywords and its default (which has to be

defined in the body)

KEYWORD confused "Are we getting confused?"

{

"yes" :: "absolutely positively"

"perhaps" :: "we are not sure"

"never" :: "never"

} "never"

REAL Length[2] "Length in each direction"

{

0:* :: "Range has to be from zero to infinity, default is one"

} 1.0

defines a REAL parameter, a BOOLEAN parameter, a KEYWORD, and an array of REAL parameters.

By default, all parameters are private; to change this, an access specification of the form global: or
restricted: (or private: to change it back) may be placed on a line by itself. This changes the access
level for any parameter defined in the file from that point on.

To access restricted parameters from another implementation, a line containing shares: <name>

declares that all parameters mentioned in the file, from now until the next access specification, originate
in implementation <name>. (Note that only one implementation can be specified on each shares: line.)
Each of these parameters must be qualified by the initial token USES or EXTENDS, where

USES indicates that the parameters range remains unchanged.

1The beginning brace ({) must sit on a line by itself; the ending brace (}) must be preceded by a carriage return.

C8 C8/C82

C1.2. ANATOMY OF A THORN CHAPTER C1. APPLICATION THORNS

EXTENDS indicates that the parameters range is going to be extended.

In contrast to parameter declarations in other access blocks, the default value must be omitted—it
is impossible to set the default value of any parameter not originating in this thorn. For example, the
following block adds possible values to the keyword initial data originally defined in the implementation
einstein, and uses the REAL parameter speed.

shares:einstein

EXTENDS KEYWORD initial_data

{

"bl_bh" :: "Brill Lindquist black holes"

"misner_bh" :: "Misner black holes"

"schwarzschild" :: "One Schwarzschild black hole"

}

USES CCTK_REAL speed

Note that you must compile at least one thorn which implements einstein.

The schedule.ccl File

By default, no routine of a thorn will be run. The schedule.ccl file defines those that should be run,
and when and under which conditions they should be run.

The specification of routine scheduling is via a schedule block which consists of lines of the form

schedule <name> at <time bin> [other options]

{
LANG: <FORTRAN|C>

OPTIONS: [list of options]

TAGS: [list of keyword=value definitions]

STORAGE: [group list with timelevels]

READS: [group list]

WRITES: [group list]

TRIGGERS: [group list]

SYNC: [group list]

} "A description"

where <name> is the name of the routine, and <time bin> is the name of a schedule bin (the CCTK prefix
is optional). A list of the most useful schedule bins for application thorns is given here, a complete and
more descriptive list is provided in Appendix D4:

CCTK STARTUP For routines, run before the grid hierarchy is set up, for example, function registra-
tion.

CCTK PARAMCHECK For routines that check parameter combinations, routines registered here only have
access to the grid size and the parameters.

C9 C9/C82

C1.2. ANATOMY OF A THORN CHAPTER C1. APPLICATION THORNS

CCTK BASEGRID Responsible for setting up coordinates, etc.

CCTK INITIAL For generating initial data.

CCTK POSTINITIAL Tasks which must be applied after initial data is created.

CCTK PRESTEP Stuff done before the evolution step.

CCTK EVOL The evolution step.

CCTK POSTSTEP Stuff done after the evolution step.

CCTK ANALYSIS For analysing data.

The other options allow finer-grained control of the scheduling. It is possible to state that the routine
must run BEFORE or AFTER another routine or set of routines. It is also possible to schedule the routine
under an alias name by using AS <alias name>.

LANG The LANG keyword specifies the linkage of the scheduled routine which determines
how to call it from the scheduler. C and Fortran linkage are possible here. C++
routines should be defined as extern "C" and registered as LANG: C.

OPTIONS Schedule options are used for mesh refinement and multi-block simulations, and
they determine “where” a routine executes. Often used schedule options are local

(also the default, may be omitted), level, or global. Routines scheduled in local
mode can access individual grid points, routines scheduled in level mode are used
e.g. to select boundary conditions, and routines schedule in global mode are e.g.
used to calculate reductions (norms).

TAGS Schedule tags, e.g. Device=1 to specify that a routine executes on an OpenCL or
CUDA device instead of on the host.

STORAGE The STORAGE keyword specifies any groups for which memory should be allocated
for the duration of the routine. The storage status reverts to its previous status
after the routine returns. The format of the STORAGE statement includes specifying
the number of timelevels of each group for which storage should be activated.

STORAGE: <group1>[timelevels1], <group2>[timelevels2]

This number can range from one to the maximum number of timelevels for the
group, as specified in the group definition in its interface.ccl file. If this maxi-
mum number is one, the timelevel specification can be omitted from the STORAGE

statement. Alternatively timelevels can be the name of a parameter accessible
to the thorn. The parameter name is the same as used in C routines of the thorn,
fully qualified parameter names of the form thorn::parameter are not allowed. In
this case 0 (zero) timelevels can be requested, which is equivalent to the STORAGE

statement being absent.

READS READS is used to declare which grid variables are read by the routine. This informa-
tion is used e.g. to determine which variables need to be copied between host and
device for OpenCL or CUDA kernel. This information can also be used to ensure
that all variables that are read have previously been written by another routine.

WRITES WRITES is used to declare which grid variables are written by the routine. This
information is used e.g. to determine which variables need to be copied between
host and device for OpenCL or CUDA kernel. This information can also be used
to ensure that all variables that are read have previously been written by another
routine.

C10 C10/C82

C1.2. ANATOMY OF A THORN CHAPTER C1. APPLICATION THORNS

TRIGGERS TRIGGERS is used when the routine is registered at ANALYSIS. This is a special time
bin; a routine registered here will only be called if one of the variables from a group
in TRIGGERS is due for output. (A routine without TRIGGERS declaration will always
be called.)

SYNC The keyword SYNC specifies groups of variables which should be synchronised (that
is, their ghostzones should be exchanged between processors) on exit from the rou-
tine. Specifying synchronisation of grid variables in schedule.ccl is an alternative
to calling the functions CCTK SyncGroup() or CCTK SyncGroupsI() (see the Refer-
ence Manual) from inside a routine. Using the SYNC keyword in the schedule.ccl

is the preferred method, since it provides the flesh with more information about
the behaviour of your code.

Besides schedule blocks, it’s possible to embed C style if/else statements in the schedule.ccl file.
These can be used to schedule things based upon the value of a parameter.

Example I:

If the parameter evolve hydro is positively set, the Fortran routine hydro predictor is scheduled to run
in the evolution loop, after the routine metric predictor and before metric corrector. The routine
names metric predictor and metric corrector, may either be real routine names from the same or a
different thorn, or they may be aliased routine names (see the next example).

Before entry to hydro predictor, storage will be allocated for one timelevel for the group of grid variables
hydro variables on exit from the routine this storage will be deallocated and the contents of the variables
will be lost.

if(CCTK_Equals(evolve_hydro,"yes"))

{

SCHEDULE hydro_predictor AT evol AFTER metric_predictor BEFORE metric_corrector

{

LANG: FORTRAN

STORAGE: hydro_variables[1]

} "Do a predictor step on the hydro variables"

}

If the parameter evolve hydro is set negatively, the hydro predictor routine will not be called by the
scheduler. Note that if the evolve hydro parameter is STEERABLE, it can be dynamically scheduled and
de-scheduled during a run if a steering interface is available.

Example II:

The thorns WaveToy77 and WaveToyC, each provide a routine to evolve the 3D wave equation: WaveToyF77 Evolution

and WaveToyC Evolution. The routine names have to be different, so that both thorns can be compiled
at the same time, their functionality is identical though. Either one of them can then be activated at run
time in the parameter file via ActiveThorns.

Since each evolution routine provides the same functionality, it makes sense to schedule them under the
common alias WaveToy Evolution to allow relative scheduling (BEFORE/AFTER) independent of the actual
routine name (which may change depending on the activation in the parameter file).

C11 C11/C82

C1.2. ANATOMY OF A THORN CHAPTER C1. APPLICATION THORNS

In both cases, the group of variables scalarfield are synchronised across processes when the routine is
exited.

schedule WaveToyF77_Evolution AS WaveToy_Evolution AT evol

{

LANG: Fortran

STORAGE: scalartmps

SYNC: scalarfield

} "Evolution of 3D wave equation"

schedule WaveToyC_Evolution AS WaveToy_Evolution AT evol

{

LANG: C

STORAGE: scalartmps

SYNC: scalarfield

} "Evolution of 3D wave equation"

The thorn IDScalarWave schedules the routine WaveBinary after the alias WaveToy Evolution. It is
scheduled independently of the C or Fortran routine name.

schedule WaveBinary AT evol AFTER WaveToy_Evolution

{

STORAGE: wavetoy::scalarevolve

LANG: Fortran

} "Provide binary source during evolution"

Storage Outside of Schedule Blocks The keyword STORAGE can also be used outside of the schedule
blocks to indicate that storage for these groups should be switched on at the start of the run. Note
that the storage is only allocated in this way at the start; a thorn could explicitly switch the storage
off (although this is not recommended practise). As for the STORAGE statement in schedule blocks, each
group must also specify how many timelevels to activate storage for.

The configuration.ccl

The configuration.ccl file is optional. It can be used for two purposes: to detect certain features of the
host system, such as the presence or absence of libraries, variable types, etc, or the location of libraries;
or to provide access to certain functions too complex or otherwise not suitable for function aliasing.

The basic concept here is that a thorn can either provide or use a capability. A thorn providing a
capability can specify a script which is run by the CST to detect features and write any configuration
files; the script may output lines to its standard output to inform the CST of features to: add to the
header files included by thorns using this capability; add to the make files used to build thorns using this
capability; or add to the main Cactus link line. The script may also indicate that this capability is not
present by returning a non-zero exit code—e.g. if the thorn is providing access to an external library, it
should return an error if the library is not installed on the system.

A thorn may either require a capability to be present, in which case it is an error if there is no thorn
providing that capability in the configuration’s ThornList, or it may optionally use a capability, in which
case a macro is defined in the thorn’s header file if a thorn providing the capability is present.

C12 C12/C82

C1.2. ANATOMY OF A THORN CHAPTER C1. APPLICATION THORNS

A configuration.ccl file has the form:

PROVIDES <My_Capability>

{
SCRIPT <My_ConfigScript>

LANG <My_Language>

}

REQUIRES <Another_Capability>

OPTIONAL <Yet_Another_Capability>

{
% DEFINE <macro>

}

which states that this thorn provides the capability My_Capability, and a script MyConfigScript should
be run to detect features of this capability; the script is in language My_Language—the CST will use the
appropriate environment or interpreter to invoke the script.

The syntax of the output of the configure script is described in Appendix D2.5.1.

C1.2.4 Naming Conventions for Source Files

The make system uses file extensions to designate coding language, as well as other properties of the code
in the file.

The following extensions are understood:

Extension Language Preprocess
.c C yes
.cc or .C C++ yes
.cl OpenCL yes
.cu CUDA yes
.F or .F77 Fortran (fixed-format) yes
.f or .f77 Fortran (fixed-format) no
.F90 Fortran (free-format) yes
.f90 Fortran (free-format) no

In order to use Cactus #include directives in a file, it must be preprocessed.

A complete description of Fortran fixed and free format can be found in any textbook on Fortran.
The most obvious differences are that in fixed format, code must begin after the 5th column and line
continuations are indicated by a character in column 5, while in free format, lines can begin anywhere,
and line continuations are indicated by an ampersand at the end of the line to be continued. Also note
that statement labels are handled very differently.

The following restrictions apply to file names:

C13 C13/C82

C1.2. ANATOMY OF A THORN CHAPTER C1. APPLICATION THORNS

• For portability across all operating systems, the base names for any particular extension should
not depend on the operating system being case sensitive (e.g. having MyFile.c and MYFILE.f is
allright, but MyFile.c and MYFILE.c could cause problems).

• Currently, all source files within a thorn must have distinct names, regardless of whether they are
placed in different subdirectories. We hope to relax this in future. Different thorns may have files
with the same names, however.

C1.2.5 Adding Source Files

By default, the CCTK looks in the src directory of the thorn for source files.

There are two ways in which to specify the sources. The easiest is to use the make.code.defn based
method in which the CCTK does all the work, but you may instead put a Makefile in the src directory
and do everything yourself.

make.code.defn based thorn building

This is the standard way to compile your thorn’s source files. The Cactus make system looks for a file
called make.code.defn in that directory (if there is no file called Makefile in the src directory). At its
simplest, this file contains two lines

• SRCS = <list of all source files in this directory>

• SUBDIRS = <list of all subdirectories, including subdirectories of subdirectories>

Each subdirectory listed should then have a make.code.defn file containing just a SRCS = line, a
SUBDIRS = line will be ignored.

In addition, each directory can have a make.code.deps file, which, for files in that directory, can contain
additional make rules and dependencies for files in that directory. See the GNU Make documentation for
complete details of the syntax.

Makefile based thorn building

This method gives you the ultimate responsibility. The only requirement is that a library called $NAME

be created by the Makefile.

The makefile is passed the following variables

$(CCTK HOME) the main Cactus directory

$(TOP) the configuration directory

$(SRCDIR) the directory in which the source files can be found

$(CONFIG) the directory containing the configuration files

$(THORN) the thorn name

C14 C14/C82

C1.2. ANATOMY OF A THORN CHAPTER C1. APPLICATION THORNS

$(SCRATCH BUILD) the scratch directory where Fortran module files should end up if they need to be
seen by other thorns.

$(NAME) the name of the library to be built

and has a working directory of <config>/build/<thorn name> .

Other makefile variables

• CPP: The C preprocessor which is used to preprocess C and C++ source code, and to determine
the C and C++ make dependencies

• FPP: The C preprocessor which is used to preprocess Fortran source code

• CPPFLAGS: Flags which are passed to CPP, to CC, and to CXX

• FPPFLAGS: Flags which are passed to FPP

• CC: The C compiler

• CXX: The C++ compiler

• CUCC: The CUDA compiler

• F90: The Fortran compiler

• F77: Same as F90

• CFLAGS: Flags which are passed to CC

• CXXFLAGS: Flags which are passed to CXX

• CUCCFLAGS: Flags which are passed to CUDA

• F90FLAGS: Flags which are passed to F90

• F77FLAGS: Same as F90FLAGS

• LD: The binder. This should not be directly ld, but should be a compiler driver such as C++.
Often, LD is the same as CXX

• LDFLAGS: Flags which are passed to LD

Note that there are no makefile variables to specify an OpenCL compiler or its flags. OpenCL is im-
plemented as a library, and code is compiled at run time via library functions to which the source code
is passed as a string. OpenCL source code (files with the extension .cl) are thus not compiled when a
Cactus configuration is built. Instead, the content of .cl files is converted into a string and placed into
the executable. These strings have the type char const * in C, and can be accessed at run time under a
(globally visible) name OpenCL source THORN FILE, where THORN and FILE and are the thorn name and
file name, respectively.

C15 C15/C82

C1.3. CACTUS VARIABLES CHAPTER C1. APPLICATION THORNS

C1.3 Cactus Variables

A grid variable is a Cactus program variable passed among thorns, (or routines belonging to the same
thorn interface), by way of calls to the flesh. They are the only variables known to Cactus. Such variables
represent values of functions on the computational grid, and are, therefore, often called grid functions.

In the Cactus context, grid variables are often referred to simply as variables.

Cactus variables are used instead of local variables for a number of reasons:

• Cactus variables can be made visible to other thorns, allowing thorns to communicate and share
data.

• Cactus variables can be distributed and communicated among processors, allowing parallel compu-
tation.

• A database of Cactus variables, and their attributes, is held by the flesh, and this information is
used by thorns, for example, for obtaining a list of variables for checkpointing.

• Many Cactus APIs and tools can only be used with Cactus variables.

• Cactus provides features for error checking based on Cactus variables and their attributes.

Cactus variables are collected into groups. All variables in a group are of the same data type, and have
the same attributes. Most Cactus operations act on a group as a whole. A group must be declared in its
thorn’s interface.ccl file.

The specification for a group declaration (fully described in Appendix D2.2) is,

<data_type> <group_name> [TYPE=<group_type>] [DIM=<dim>] [TIMELEVELS=<num>]

[SIZE=<size in each direction>] [DISTRIB=<distribution_type>]

[GHOSTSIZE=<ghostsize>]

[{
[<variable_name>[,]<variable_name>

<variable_name>]

} ["<group_description>"]]

Currently, the names of groups and variables must be distinct.

C1.3.1 Data Type

Cactus supports integer, real, complex and character variable types, in various different sizes. (Sizes in
the following refer to the number of bytes occupied by the a variable of the type).

INTEGER CCTK INT, CCTK INT1, CCTK INT2, CCTK INT4, CCTK INT8. (CCTK INT defaults to
being CCTK INT4).

REAL CCTK REAL, CCTK REAL4, CCTK REAL8, CCTK REAL16. (CCTK REAL defaults to being
CCTK REAL8).

C16 C16/C82

C1.3. CACTUS VARIABLES CHAPTER C1. APPLICATION THORNS

COMPLEX CCTK COMPLEX, CCTK COMPLEX8, CCTK COMPLEX16, CCTK COMPLEX32. (CCTK COMPLEX

defaults to being CCTK COMPLEX16).

BYTE This is a 1 byte data type.

Normally a thorn should use the default types—CCTK INT, CCTK REAL, CCTK COMPLEX—rather than explic-
itly setting the size, as this gives maximum portability. Also, the defaults can be changed at configuration
time (see Section B2.1.1), and this allows people to compile the code with different precisions to test for
roundoff effects, or to run more quickly with a lower accuracy.

C1.3.2 Group Types

Groups can be either scalars, grid functions (GFs), or grid arrays. Different attributes are relevant for
the different group types.

SCALAR This is just a single number, e.g. the total energy of some field. These variables
aren’t communicated between processors—what would be the result of such com-
munication?

GF This is the most common group type. A GF is an array with a specific size, set at
run time in the parameter file, which is distributed across processors. All GFs have
the same size, and the same number of ghostzones. Groups of GFs can also specify
a dimension, and number of timelevels.

ARRAY This is a more general form of the GF. Each group of arrays can have a distinct
size and number of ghostzones, in addition to dimension and number of timelevels.
The drawback of using an array over a GF is that a lot of data about the array can
only be determined by function calls, rather than the quicker methods available for
GFs.

C1.3.3 Timelevels

These are best introduced by an example using finite differencing. Consider the 1-D wave equation

∂2φ

∂t2
=
∂2φ

∂x2
(C1.1)

To solve this by partial differences, one discretises the derivatives to get an equation relating the solution
at different times. There are many ways to do this, one of which produces the following difference equation

φ(t+ ∆t, x)− 2φ(t, x) + φ(t−∆t, x) =
∆t2

∆x2
{φ(t, x+ ∆x)− 2φ(t, x) + φ(t, x−∆x)} (C1.2)

which relates the three timelevels t+ ∆t, t, and t−∆t.

Obviously, the code could just use three variables, one for each timelevel. This turns out, however, to be
inefficient, because as soon as the time is incremented to t+ ∆t, it would be necessary to copy data from
the t variable to the t−∆t variable and from the t+ ∆t variable to the t variable.

To remove this extraneous copy, Cactus allows you to specify the number of timelevels used by your
numerical scheme. It then generates variables with the base name (e.g. phi) suffixed by a qualifier for
which timelevel is being referred to—no suffix for the next timelevel, and p for each previous timelevel.

C17 C17/C82

C1.3. CACTUS VARIABLES CHAPTER C1. APPLICATION THORNS

The timelevels are rotated (by the driver thorn) at the start of each evolution step, that is:

initial

poststep

analysis

loop:

rotate timelevels

t = t + dt

it = it + 1

prestep

evolve

poststep

analysis

Timelevel rotation means that, for example, phi p now holds the values of the former phi, and phi p p

the values of the former phi p, etc. Note that after rotation, phi is undefined, and its values should not
be used until they have been updated.

All timelevels, except the current level, should be considered read-only during evolution, that is, their
values should not be changed by thorns. The exception to this rule is for function initialisation, when
the values at the previous timelevels do need to be explicitly filled out.

C1.3.4 Size and Distrib

A Cactus grid function or array has a size set at runtime by parameters. This size can either be the
global size of the array across all processors (DISTRIB=DEFAULT), or, if DISTRIB=CONSTANT, the specified
size on each processor. If the size is split across processors, the driver thorn is responsible for assigning
the size on each processor.

C1.3.5 Ghost Zones

Cactus is based upon a distributed computing paradigm. That is, the problem domain is split into blocks,
each of which is assigned to a processor. For hyperbolic and parabolic problems the blocks only need to
communicate at the edges.

To illustrate this, take the example of the wave equation again. Equation C1.2 describes a possible time-
evolution scheme. On examination, you can see that to generate the data at the point (t + ∆t, x) we
need data from the four points (t, x), (t−∆t, x), (t, x+ ∆x), and (t, x−∆x) only. Ignoring the points
at x, which are obviously always available on a given processor, you can see that the algorithm requires
a point on either side of the point x, i.e. this algorithm has stencil size 1. Similarly algorithms requiring
two points on either side have stencil size 2, etc.

Now, if you evolve the above scheme, it becomes apparent that at each iteration the number of grid points
you can evolve decreases by one at each edge (see Figure C1.1).

At the outer boundary of the physical domain, the data for the boundary point can be generated by
the boundary conditions, however, at internal boundaries, the data has to be copied from the adjacent
processor. It would be inefficient to copy each point individually, so instead, a number of ghostzones are

C18 C18/C82

C1.3. CACTUS VARIABLES CHAPTER C1. APPLICATION THORNS

insufficient data available to
update field at these locations

processor 0 processor 1

boundary of physical domain

time

Figure C1.1: Distributed wave equation with no ghostzones

created at the internal boundaries. A ghostzone consists of a copy of the whole plane (in 3D, line in 2D,
point in 1D) of the data from the adjacent processor. That is, the array on each processor is augmented
with copies of points from the adjacent processors, thus allowing the algorithm to proceed on the points
owned by this processor without having to worry about copying data. Once the data has been evolved
one step, the data in the ghostzones can be exchanged (or synchronised) between processors in one fell
swoop before the next evolution step. (See Figure C1.2.) Note that you should have at least as many
ghostzones as your stencil size requires.

processor 0

time

boundary of physical domain

ghostzones

copy

processor 1

Figure C1.2: Distributed wave equation with ghostzones

C1.3.6 Information about Grid Variables

The flesh holds a database with information related to grid variables, and provides a set of querying
APIs.

Group Information

Fundamental information about grid functions (e.g. local grid size and location, number of ghostzones) is
passed through the argument list of scheduled routines (see Section C1.6.2). To obtain similar information
from non-scheduled routines, or for general grid variables, a set of functions are provided, the last two
letters of which specify whether the information is requested using a group name (GN) or index (GI), or
a variable name (VN) or index (VI).

CCTK Grouplsh[GN|GI|VN|VI]

An array of integers with the local grid size on this processor.

CCTK Groupgsh[GN|GI|VN|VI]

An array of integers with the global grid size.

CCTK Groupbbox[GN|GI|VN|VI]

An array of integers which indicate whether the boundaries are internal boundaries
(e.g. between processors), or physical boundaries. A value of 1 indicates a physical

C19 C19/C82

C1.4. CACTUS PARAMETERS CHAPTER C1. APPLICATION THORNS

(outer) boundary at the edge of the computational grid, and 0 indicates an internal
boundary.

CCTK Groupnghostzones[GN|GI|VN|VI]

An array of integers with the number of ghostzones used in each direction.

CCTK Grouplbnd[GN|GI|VN|VI]

An array of integers containing the lowest index (in each direction) of the local grid,
as seen on the global grid. Note that these indices start from zero, so you need to
add one when using them in Fortran thorns.

CCTK Groupubnd[GN|GI|VN|VI]

An array of integers containing the largest index (in each direction) of the local
grid, as seen on the global grid. Note that these indices start from zero, so you
need to add one when using them in Fortran thorns.

C1.4 Cactus Parameters

Parameters are the means by which the user specifies the runtime behaviour of the code. Each parameter
has a data type and a name, as well as a range of allowed values and a default value. These are declared
in the thorn’s param.ccl file.

The thorn determines which parameters can be used in other thorns by specifying a scope for the thorn,
as explained in Section C1.4.2.

The user may specify initial values for parameters in the parameter file (see Section B3.2); the flesh
validates these values against the parameters’ allowed ranges. Otherwise, the initial value of the parameter
is taken to be its default. Once validated, parameter values are fixed, and cannot be changed, unless the
parameter is specified to be steerable (see C1.4.3). For a detailed discussion of the param.ccl syntax,
see Appendix D2.3.

The full specification for a parameter declaration is

[EXTENDS|USES] <parameter_type>[[<size>]] <parameter name> "<parameter description>"

{
<PARAMETER_RANGES>

} <default value>

You can obtain lists of the parameters associated with each thorn using the Cactus command line options
-o and -O (Section B3.1).

C1.4.1 Types and Ranges

Parameters can be of these types:

Int Can take any integral value

Real Can take any floating point value

Keyword Can have a value consisting of one of a choice of strings

C20 C20/C82

C1.4. CACTUS PARAMETERS CHAPTER C1. APPLICATION THORNS

Boolean Can be true or false (1, t, true, or 0, f, false)

String Can have any string value

Each parameter can be validated against a set of allowed ranges, each of which has a description associated
with it. The nature of the range is determined by the type of parameter, as follows:

Int

The range specification is of the form

lower:upper:stride

where lower and upper specify the lower and upper allowed range, and stride allows numbers to be
be missed out, e.g.

1:21:2

means the value must be an odd number between one and twenty-one (inclusive).

A missing end of range (or a ‘*’) indicates negative or positive infinity, and the default stride is one.

Real

The range specification is of the form

lower:upper

where lower and upper specify the lower and upper allowed range. A missing end of range (or a ‘*’)
implies negative or positive infinity. The above is inclusive of the endpoints. A ‘(’ (or ‘)’) before (or
after) the lower (or upper) range specifies an open endpoint.

The numbers written in a param.ccl file are interpreted as C code. To express a number in ‘scientific
notation’, use, e.g. ‘1e-10’, which is a double precision constant in C. (If the floating precision of the
variable to which it is assigned is not double, then C will typecast appropriately. If you really want to
specify a single precision floating constant, or a long double constant, append the number with f or l

respectively.)

Keyword

The range specification consists of a string, which will be matched in a case insensitive manner.

Boolean

There is no range specification for this type of parameter.

C21 C21/C82

C1.5. SCHEDULING CHAPTER C1. APPLICATION THORNS

String

The range is a POSIX regular expression. On some machines you may be able to use extended regular
expressions, but this is not guaranteed to be portable.

C1.4.2 Scope

Parameters can be GLOBAL, RESTRICTED, or PRIVATE. Global parameters are visible to all thorns. Re-
stricted parameters are visible to any thorn which chooses to USE or EXTEND it. A private parameter is
only visible to the thorn which declares it. The default scope is PRIVATE.

C1.4.3 Steerable

A parameter can be changed dynamically if it is specified to be steerable (see Section D2.3.2). It can then
be changed by a call to the flesh function CCTK ParameterSet (see the Reference Guide for a description
of this function).

C1.5 Scheduling

Cactus contains a rule-based scheduling system, which determines which routines, from which thorns are
run in which order. The scheduler determines if the specifications are inconsistent, but does allow the
user to schedule a routine with respect to another routine which may not exist. For a detailed discussion
of the schedule.ccl syntax see Appendix D2.4.

A usual simple specification for a schedule declaration is

schedule <function name> AT <schedule bin>

{
LANG: <language>

[STORAGE: <group>[[timelevels]],<group>[[timelevels]]...]

} "Description of function"

The full specification for a schedule declaration is

schedule [GROUP] <function|schedule group name> AT|IN <schedule bin|group name>

[AS <alias>]

[WHILE <variable>] [IF <variable>]

[BEFORE|AFTER <item>|(<item> <item> ...)]

{
LANG: <language>

[STORAGE: <group>[[timelevels]],<group>[[timelevels]]...]

[TRIGGER: <group>,<group>...]

[SYNC: <group>,<group>...]

[OPTIONS: <option>,<option>...]

} "Description of function or schedule group"

C22 C22/C82

C1.5. SCHEDULING CHAPTER C1. APPLICATION THORNS

This full schedule specification consists of a mandatory part, a set of options, and the main body limited
by braces, referred to as the schedule block.

Each schedule item is scheduled either AT a particular scheduling bin, or IN a schedule group.

C1.5.1 Schedule Bins

These are the main times at which scheduled functions are run, from fixed points in the flesh and driver
thorn (schedule bins can easily be traversed from any thorn, although this is not usual). When a schedule
bin is traversed, all the functions scheduled in that particular are called, in the manner described in
Section C1.5.5 and respecting the requested ordering of functions(Section C1.5.3). In the absence of any
ordering, functions in a particular schedule bin will be called in an undetermined order.

The schedule bins are described in Section C1.2.3. Note that the preceding CCTK is optional for the use
of the bin names in the schedule.ccl file.

C1.5.2 Groups

If the optional GROUP specifier is used, the item is a schedule group rather than a normal function.
Schedule groups are effectively new, user-defined, schedule bins. Functions or groups may be scheduled
IN these, in the same way as they are scheduled AT the main schedule bins. (That is, groups may be
nested.)

C1.5.3 Schedule Options

The options define various characteristics of the schedule item.

AS This assigns a new name to a function for scheduling purposes. This is used, for
instance, to allow a thorn to schedule something before or after a routine from
another implementation; two thorns providing this implementation can schedule a
routine AS the same thing, thus allowing other thorns to operate independently of
which one is active.

WHILE This specifies a CCTK INT grid scalar which is used to control the execution of this
item. As long as the grid scalar has a nonzero value, the schedule item will be
executed repeatedly. This allows dynamic behaviour with scheduling.

IF This specifies a CCTK INT grid scalar which is used to control the execution of this
item. If the grid scalar has a nonzero value, the schedule item will be executed,
otherwise the item will be ignored. This allows dynamic behaviour with scheduling.

If both an IF and a WHILE clause are present, then the schedule is executed according
to the following pseudocode:

IF condition

WHILE condition

SCHEDULE item

END WHILE

END IF

C23 C23/C82

C1.5. SCHEDULING CHAPTER C1. APPLICATION THORNS

BEFORE or AFTER These specify either

• a function or group before or after which this item will be scheduled, or

• a list of functions and/or groups; this item will be scheduled (once) before any
of them or after all of them respectively.

Note that a single schedule item may have multiple BEFORE and/or AFTER options;
the scheduler will honor all of these (or abort with a fatal error). For example,

schedule FOO BEFORE A BEFORE B BEFORE C ...

schedules FOO before any of A, B, or C. This can also be written

schedule FOO BEFORE (A B C) ...

Note that the set of all BEFORE/AFTER options in all active schedule blocks of all
active thorns, must specify a (directed) graph with no cycles; if there are any cycles,
then the scheduler will abort with a fatal error.

C1.5.4 The Schedule Block

The schedule block specifies further details of the scheduled function or group.

LANG This specifies the language of the routine. Currently this is either C or Fortran.
C++ routines should be defined as extern "C" and registered as LANG: C.

STORAGE The STORAGE keyword specifies groups for which memory should be allocated for the
duration of the routine or schedule group. The storage status reverts to its previous
status after completion of the routine or schedule group. Each group must specify
how many timelevels to activate storage for, from 1 up to the maximum number
for the group as specified in the defining interface.ccl file. If the maximum
is 1 (the default) this number may be omitted. Alternatively timelevels can
be the name of a parameter accessible to the thorn. The parameter name is the
same as used in C routines of the thorn, fully qualified parameter names of the
form thorn::parameter are not allowed. In this case 0 (zero) timelevels can be
requested, which is equivalent to the STORAGE statement being absent.

TRIGGER This is only used for items scheduled at timebin CCTK ANALYSIS. The item will only
be executed if output is due for at least one variable in one of the listed groups.
(The item will also be called if there is no group listed.)

SYNC On exit from this item, the ghost zones of the listed groups will be exchanged.

OPTIONS This is for miscellaneous options. The list of accepted options is given in Ap-
pendix D2.4.2.

C1.5.5 How Cactus Calls Scheduled Functions

For each scheduled function called, the flesh performs a variety of jobs at entry and exit.

C24 C24/C82

C1.6. WRITING A THORN CHAPTER C1. APPLICATION THORNS

On entry to a scheduled routine, if the routine is being called at the CCTK ANALYSIS timebin first, a check
is made to see if the routine should actually be called on this timestep. For this, all grid variables in the
trigger groups for the routine are checked with all registered output methods to determine if it is time to
output any triggers. The routine will only be called if at least one is due to be output. Note that once
a grid variable has been analyzed, it gets marked as such, and will not be analyzed again during this
iteration. (Note that a routine without any trigger groups will also be called.) Thus, if more than one
analysis routine should be triggered on the same trigger variable(s), they must be scheduled in a single
group. Routines from all timebins, other than ANALYSIS, are always called.

Next, storage is assigned for any required variables, remembering the original state of storage.

The routine is then called, and on exit, any required grid variables are first synchronised. Following
synchronization, any required output methods are called for the triggers. Finally, the storage of grid
variables is returned to the original state.

C1.6 Writing a Thorn

C1.6.1 Thorn Programming Languages

When you start writing a new thorn, the first decision to make is which programming language to use.
The source code in Cactus thorns can be written in any mixture of C, C++, CUDA, or Fortran. The
following points should be considered when choosing a language to work in:

• All functions designed for application thorn writers are available in all languages, however, some
interfaces for infrastructure thorn writing are only available from C or C++.

Whatever language you choose, if you want your thorn to be portable, and compile and run on multiple
platforms, stick to the standards and don’t use machine dependent extensions.

C1.6.2 What the Flesh Provides

The flesh provides for thorns:

Variables

Parameters

Cactus Functions • Driver (parallelisation) utilities

• I/O utilities

• Coordinates utilities

• Reduction utilities

• Interpolation utilities

• Information utilities

C25 C25/C82

C1.6. WRITING A THORN CHAPTER C1. APPLICATION THORNS

Fortran Routines

Any source file using Cactus infrastructure should include the header file cctk.h using the line

#include "cctk.h"

(Fortran programmers should not be put off by this being a C style header file—most Cactus files are
run through a C preprocessor before compilation.)

Variables Any routine using Cactus argument lists (for example, all routines called from the scheduler
at time bins between CCTK STARTUP and CCTK SHUTDOWN) should include at the top of the file the header

#include "cctk_Arguments.h"

A Cactus macro CCTK ARGUMENTS is defined for each thorn to contain:

• General information about the grid hierarchy, for example, the number of grid points used. See
Section C1.6.2 for a complete list.

• All the grid variables defined in the thorn’s interface.ccl

• All the grid variables required from other thorns as requested by the inherits and friend lines in
the interface.ccl

These variables must be declared at the start of the routine using the macro DECLARE CCTK ARGUMENTS.

To pass the arguments to another routine in the same thorn use the macro CCTK PASS FTOF in the calling
routine, and again the macro CCTK ARGUMENTS in the receiving routine.

Note that you cannot use Cactus argument lists in routines scheduled at the CCTK STARTUP and CCTK SHUTDOWN

time bins, because at this time no grid hierarchy exists.

Parameters All parameters defined in a thorn’s param.ccl and all global parameters, appear as local
variables of the corresponding CCTK data type in Fortran source code, i.e. Booleans and Integers appear
as CCTK INT types (with nonzero/zero values for boolean yes/no), Reals as CCTK REAL, and Keywords
and String parameters as CCTK STRING (see also note below). These variables are read only, and changes
should not be made to them. The effect of changing a parameter is undefined (at best).

Any routine using Cactus parameters should include at the top of the file the header

#include "cctk_Parameters.h"

The parameters should be declared at the start of the routine using them with the macro DECLARE CCTK PARAMETERS.

In Fortran, special care should be taken with string valued parameters. These parameters are passed as
C pointers, and can not be treated as normal Fortran strings. To compare a string valued parameter and
Fortran string, use the macro CCTK EQUALS() or the function CCTK Equals() (see the reference manual

C26 C26/C82

C1.6. WRITING A THORN CHAPTER C1. APPLICATION THORNS

for a description of the CCTK functions). To print the value of a string valued parameter to screen, use
the subroutine CCTK PrintString(). A further function CCTK FortranString provides a mechanism for
converting a string parameter to a Fortran string. For example, if operator is a Cactus string parameter
holding the name of a reduction operator whose handle you need to find, you cannot pass it directly
into the subroutine CCTK LocalArrayReductionHandle, which is expecting a Fortran string. Instead,
the following is needed:

character*200 fortran_operator

CCTK_INT fortran_operator_len

integer handle

call CCTK_FortranString(fortran_operator_len,operator,fortran_operator)

call CCTK_LocalArrayReductionHandle(handle,fortran_operator(1:fortran_operator_len))

Fortran Example The Fortran routine, MyFRoutine, is scheduled in the schedule.ccl file, doesn’t
use Cactus parameters, and calls another routine, in the same thorn, MyNewRoutine, which does use
parameters. This routine needs to be passed an integer flag as well as the standard Cactus variables.
The source file should look like

#include "cctk.h"

#include "cctk_Arguments.h"

#include "cctk_Parameters.h"

subroutine MyFRoutine(CCTK_ARGUMENTS)

c I’m very cautious, so I want to declare all variables

implicit none

DECLARE_CCTK_ARGUMENTS

integer flag

flag = 1

call MyNewRoutine(CCTK_PASS_FTOF,flag)

return

end

subroutine MyNewRoutine(CCTK_ARGUMENTS,flag)

implicit none

DECLARE_CCTK_ARGUMENTS

DECLARE_CCTK_PARAMETERS

integer flag

c Main code goes here

return

end

C27 C27/C82

C1.6. WRITING A THORN CHAPTER C1. APPLICATION THORNS

Cactus Fortran Functions Cactus Fortran functions, for example, CCTK MyProc and CCTK Equals,
can all be declared by adding the statement

#include "cctk_Functions.h"

near the top of the file, and adding the declaration

DECLARE_CCTK_FUNCTIONS

to a module or a subroutine after the implicit none statement, but before any executable code.

Fortran Modules Fortran modules should be placed into source files that have the same name as the
module, followed by the corresponding file name suffix. A module metric should thus be placed, e.g. into
a file metric.F90. This convention allows the Cactus build system to automatically deduce the compile
time dependencies.

If you do not follow this convention, then you have to include the modules into the thorn’s make.code.deps
file (Section C1.2.5) to ensure they are compiled before the routines which use them. This is especially im-
portant for parallel building. For example, if a routine in MyRoutine.F90 uses a module in MyModule.F90,
then add the line:

MyRoutine.F90.o: MyModule.F90.o

The MOD function The intrinsic function MOD in Fortran takes two integer arguments, which should
both be of the same type. This means that it may be necessary to cast the arguments to, e.g. INT for
some architectures. This can occur in particular when a CCTK INT parameter and the Cactus variable
cctk iteration (which is declared to be INTEGER) are used, in which case the correct code is

MOD(cctk_iteration,INT(MyParameter))

C Routines

Any source file using Cactus infrastructure should include the header file cctk.h using the line

#include "cctk.h"

Variables Any routine using Cactus argument lists (for example, all routines called from the scheduler
at time bins between CCTK STARTUP and CCTK SHUTDOWN), should include at the top of the file the header

#include "cctk_Arguments.h"

A Cactus macro CCTK ARGUMENTS is defined for each thorn to contain

• General information about the grid hierarchy, for example, the number of grid points on the pro-
cessor. See Section C1.6.2 for a complete list.

C28 C28/C82

C1.6. WRITING A THORN CHAPTER C1. APPLICATION THORNS

• All the grid variables defined in the thorn’s interface.ccl

• All the grid variables required from other thorns as requested by the inherits and friend lines in
the interface.ccl

These variables must be declared at the start of the routine using the macro DECLARE CCTK ARGUMENTS.
This macro should always be the first line of the routine.

To pass the arguments to another routine in the same thorn, use the macro CCTK PASS CTOC in the calling
routine, and again the macro CCTK ARGUMENTS in the receiving routine.

Note that you cannot use Cactus argument lists in routines scheduled at the CCTK STARTUP and CCTK SHUTDOWN

time bins, because at this time no grid hierarchy exists.

Parameters All parameters defined in a thorn’s param.ccl and all global parameters, appear as local
variables of the corresponding CCTK data type in C source code, i.e. Integers and Booleans appear as
CCTK INT types (with nonzero/zero values for boolean yes/no), Reals as CCTK REAL, and Keywords and
String parameters as CCTK STRING. These variables are read only, and changes should not be made to
them. The effect of changing a parameter is undefined (at best).

Any routine using Cactus parameters should include at the top of the file the header

#include "cctk_Parameters.h"

The parameters should be declared as the last statement in the declaration part of the routine using them
with the macro DECLARE CCTK PARAMETERS.

Example The C routine MyCRoutine is scheduled in the schedule.ccl file, and uses Cactus parame-
ters. The source file should look like

#include "cctk.h"

#include "cctk_Arguments.h"

#include "cctk_Parameters.h"

void MyCRoutine(CCTK_ARGUMENTS)

{

DECLARE_CCTK_ARGUMENTS

DECLARE_CCTK_PARAMETERS

/* Here goes your code */

}

Complex variables Cactus supports complex grid variables of type CCTK COMPLEX which are realized
through the types complex, std::complex and COMPLEX in C, C++ and Fortran respectively. Complex
number support is available in C in the C99 language standard which Cactus requires.

There is a known incompatibility when returning complex numbers from C and Fortran functions to
C++ callers on some architectures. Access to variables through pointers and in arrays is not affected.
A workaround is not to return values but instead pass in a pointer to a local variable to hold the return
value.

C29 C29/C82

C1.6. WRITING A THORN CHAPTER C1. APPLICATION THORNS

Specifically for C Programmers Grid functions are held in memory as 1-dimensional C arrays.
These are laid out in memory as in Fortran. This means that the first index should be incremented
through most rapidly. This is illustrated in the example below.

Cactus provides macros to find the 1-dimensional index which is needed from the multidimensional indices
which are usually used. There is a macro for each dimension of grid function. Below is an artificial example
to demonstrate this using the 3D macro CCTK GFINDEX3D:

for (k=0; k<cctk_lsh[2]; k++)

{

for (j=0; j<cctk_lsh[1]; j++)

{

for (i=0; i<cctk_lsh[0]; i++)

{

int const ind3d = CCTK_GFINDEX3D(cctkGH,i,j,k);

rho[ind3d] = exp(-pow(r[ind3d],2));

}

}

}

Here, CCTK_GFINDEX3D(cctkGH,i,j,k) expands to

((i) + cctkGH->cctk_lsh[0]*((j)+cctkGH->cctk_lsh[1]*(k)))

Note: In Fortran, grid functions are accessed as Fortran arrays, i.e. simply as rho(i,j,k).

To access vector grid functions (vector grid functions are a “vector” of grid functions; see section D2.2.4),
one also needs to specify the vector index. This is best done via the 3D macro CCTK VECTGFINDEX3D:

for (k=0; k<cctk_lsh[2]; k++)

{

for (j=0; j<cctk_lsh[1]; j++)

{

for (i=0; i<cctk_lsh[0]; i++)

{

/* vector indices are 0, 1, 2 */

vel[CCTK_VECTGFINDEX3D(cctkGH,i,j,k,0)] = 1.0;

vel[CCTK_VECTGFINDEX3D(cctkGH,i,j,k,1)] = 0.0;

vel[CCTK_VECTGFINDEX3D(cctkGH,i,j,k,2)] = 0.0;

}

}

}

Cactus Variables

The Cactus variables which are passed through the macro CCTK ARGUMENTS are

cctkGH A C pointer identifying the grid hierarchy.

C30 C30/C82

C1.6. WRITING A THORN CHAPTER C1. APPLICATION THORNS

cctk dim An integer with the number of dimensions used for this grid hierarchy.

cctk lsh An array of cctk dim integers with the local grid size on this processor.

cctk ash An array of cctk dim integers with the allocated size of the array. This may be
larger than the local size; the additional points may not be used.

cctk gsh An array of cctk dim integers with the global grid size.

cctk iteration The current iteration number.

cctk delta time A CCTK REAL with the timestep.

cctk time A CCTK REAL with the current time.

cctk delta space An array of cctk dim CCTK REALs with the grid spacing in each direction.

cctk nghostzones An array of cctk dim integers with the number of ghostzones used in each direction.

cctk origin space An array of cctk dim CCTK REALs with the spatial coordinates of the global origin
of the grid.

The following variables describe the location of the local grid (e.g. the grid treated on a given processor)
within the global grid.

cctk lbnd An array of cctk dim integers containing the lowest index (in each direction) of
the local grid, as seen on the global grid. Note that these indices start from zero,
so you need to add one when using them in Fortran thorns.

cctk ubnd An array of cctk dim integers containing the largest index (in each direction) of
the local grid, as seen on the global grid. Note that these indices start from zero,
so you need to add one when using them in Fortran thorns.

cctk bbox An array of 2∗cctk dim integers (in the order [dimmin
0 ,dimmax

0 ,dimmin
1 ,dimmax

1 , . . .]),
which indicate whether the boundaries are internal boundaries (e.g. between pro-
cessors), or physical boundaries. A value of 1 indicates a physical (outer) boundary
at the edge of the computational grid, and 0 indicates an internal boundary.

The following variable is needed for grid refinement methods

cctk levfac An array of cctk dim integer factors by which the local grid is refined in the cor-
responding direction with respect to the base grid.

cctk levoff and cctk levoffdenom Two arrays of cctk dim integers describing the distance by
which the local grid is offset with respect to the base grid, measured in local grid
spacings. The distance in direction dir is given by 1.0 * cctk levoff[dir] /

cctk levoffdenom[dir].

cctk timefac The integer factor by which the time step size is reduced with respect to the base
grid.

The following variables are used for identifying convergence levels.

cctk convlevel The convergence level of this grid hierarchy. The base level is 0, and every level
above that is coarsened by a factor of cctk convfac.

C31 C31/C82

C1.6. WRITING A THORN CHAPTER C1. APPLICATION THORNS

cctk convfac The factor between convergence levels. The relation between the resolutions of
different convergence levels is ∆xL = ∆x0 · FL, where L is the convergence level
and F is the convergence factor. The convergence factor defaults to 2.

The variables cctk delta space, cctk delta time, and cctk origin space denote the grid spacings,
time step size, and spatial origin on the base grid. If you are using a grid refinement method, you
need to calculate these quantities on the grid you are on. There are Cactus macros provided for this,
with the syntax CCTK DELTA SPACE(dir), CCTK ORIGIN SPACE(dir), and CCTK DELTA TIME for both C
and Fortran. It is recommended that these macros are always used to provide the grid spacings, time
step sizes, and spatial origins in your thorns. In doing so, you incorporate the effects of cctk levfac,
cctk levoff, cctk levoffdenom, and cctk timefac, so that you do not explicitly have to take them
into account.

Putting the above information together, Figure C1.3 shows two different ways to compute the global
Cactus xyz coordinates of the current grid point. Because the “alternate calculation” (the one using
Grid::x, Grid::y, and Grid::z) gives the true global xyz coordinates even in a multipatch/multiblock
context, this is generally the preferred form for general use.

Cactus Data Types

To provide portability across platforms, the Cactus grid variables and parameters are defined and declared
using Cactus data types. The most important of these data types are described below, for a full description
see Section C1.9.8. These data types should be used to declare local variables where needed, and to declare
Cactus grid variables or parameters that need declarations.

CCTK INT default size 4 bytes

CCTK REAL default size 8 bytes

CCTK COMPLEX consists of two CCTK REAL elements

Example In the following example, MyScalar is a grid scalar which is declared in the interface.ccl

as CCTK REAL.

subroutine InitialData(CCTK_ARGUMENTS)

DECLARE_CCTK_ARGUMENTS

CCTK_REAL local_var

local_var = 1.0/3.0

MyScalar = local_var

return

end

Declaring local var to have a non-Cactus data type, e.g. REAL*4, or using one of the other Cactus real
data types described in Section C1.9.8, could give problems for different architectures or configurations.

C32 C32/C82

C1.6. WRITING A THORN CHAPTER C1. APPLICATION THORNS

#include <stddef.h> /* defines size_t */

#include "cctk.h"

void MyThorn_MyFunction(CCTK_ARGUMENTS)

{

int i,j,k;

for (k = 0 ; k < cctk_lsh[2] ; ++k)

{

for (j = 0 ; j < cctk_lsh[1] ; ++j)

{

for (i = 0 ; i < cctk_lsh[0] ; ++i)

{

const size_t posn = CCTK_GFINDEX3D(cctkGH, i,j,k);

/* calculate the global xyz coordinates of the (i,j,k) grid point */

/* (in a multipatch/multiblock context, this gives the per-patch coordinates) */

const CCTK_REAL xcoord = CCTK_ORIGIN_SPACE(0) + (cctk_lbnd[0] + i)*CCTK_DELTA_SPACE(0);

const CCTK_REAL ycoord = CCTK_ORIGIN_SPACE(1) + (cctk_lbnd[1] + j)*CCTK_DELTA_SPACE(1);

const CCTK_REAL zcoord = CCTK_ORIGIN_SPACE(2) + (cctk_lbnd[2] + k)*CCTK_DELTA_SPACE(2);

/* an alternate calculation, which requires that this thorn inherit from Grid */

/* (in a multipatch/multiblock context, this gives the true global xyz coordinates) */

const CCTK_REAL xxcoord = /* Grid:: */ x[posn];

const CCTK_REAL yycoord = /* Grid:: */ y[posn];

const CCTK_REAL zzcoord = /* Grid:: */ z[posn];

}

}

}

}

Figure C1.3: This figure shows two different ways to compute the global Cactus xyz coordinates of
the current grid point. Because the “alternate calculation” (the one one using Grid::x, Grid::y, and
Grid::z) gives the true global xyz coordinates even in a multipatch/multiblock context, this is generally
the preferred form for general use.

C33 C33/C82

C1.7. CACTUS APPLICATION INTERFACES CHAPTER C1. APPLICATION THORNS

C1.6.3 Parallelisation

The flesh itself does not actually set up grid variables. This is done by a driver thorn. To allow
the distribution of a grid over a number of processors, the driver thorn must also provide the grid
decomposition, and routines to enable parallelisation. The method used to provide this parallelisation
(e.g. MPI, PVM) is not usually important for the thorn writer, since the driver thorn provides routines
which are called by standard interfaces from the flesh. Here, we describe briefly the most important of
these routines for the application thorn writer. A more detailed description of these interfaces with their
arguments, is given in the Reference Manual. A complete description of the routines that a driver thorn
must provide, will be provided in the Infrastructure Thorn Writers Guide (Part C2). The standard driver
thorn is currently PUGH in the CactusPUGH package, which is a parallel unigrid driver.

CCTK nProcs Returns the number of processors being used

CCTK MyProc Returns the processor number (this starts at processor number zero)

CCTK SyncGroup, CCTK SyncGroupsI

Synchronises either a single group or a set of groups of grid arrays by exchanging the
values held in each processor ghostzones, with the physical values of their neighbours
(see the Reference Manual)

CCTK Barrier Waits for all processors to reach this point before proceeding

C1.7 Cactus Application Interfaces

C1.7.1 Iterating Over Grid Points

A grid function consists of a multi-dimensional array of grid points. These grid points fall into several
types:

interior regular grid point, presumably evolved in time

ghost inter-process boundary, containing copies of values owned by another process

physical boundary outer boundary, presumably defined via a boundary condition

symmetry boundary defined via a symmetry, e.g. a reflection symmetry or periodicity

Grid points in the edges and corners may combine several types. For example, a point in a corner may
be a ghost point in the x direction, a physical boundary point in the y direction, and a symmetry point
in the z direction.

The size of the physical boundary depends on the application. The number of ghost points is defined
by the driver; the number of symmetry points is in principle defined by the thorn implementing the
respective symmetry condition, but will in general be the same as the number of ghost points to avoid
inconsistencies.

When iterating over grid points, one usually needs to know about the boundary sizes and boundary types
present. Details about this is explained in thorn CactusBase/CoordBase.

The flesh provides a set of macros to iterate over particular types of grid points:

C34 C34/C82

C1.7. CACTUS APPLICATION INTERFACES CHAPTER C1. APPLICATION THORNS

CCTK LOOP ALL Loop over all grid points

CCTK LOOP INT Loop over all interior grid points

CCTK LOOP BND Loop over all physical boundary points

CCTK LOOP INTBND Loop over all “interior” physical boundary points, i.e. over all those physical boundary
points that are not also ghost or symmetry points

As described above, points on edges and corners can have several boundary types at once, e.g. can be both
a physical and a symmetry point. LOOP BND and LOOP INTBND treat these different: LOOP BND loops over all
points that are physical boundaries (independent of whether they also are symmetry or ghost boundaries),
while LOOP INTBND loops over those points that are only physical boundaries (and excludes any points that
belongs to a symmetry or ghost boundary). LOOP BND does not require applying a symmetry condition or
synchronisation afterwards (but does not allow taking tangential derivatives); LOOP INTBND allows taking
tangential derivatives (but requires applying symmetry boundaries and synchronising afterwards).

In 3 dimensions, these macros should be called as follows:

CCTK_LOOP3_ALL(name, cctkGH, i,j,k) {

... body of the loop

} CCTK_ENDLOOP3_ALL(name);

CCTK_LOOP3_INT(name, cctkGH, i,j,k) {

... body of the loop

} CCTK_ENDLOOP3_INT(name);

CCTK_LOOP3_BND(name, cctkGH, i,j,k, ni,nj,nk) {

... body of the loop

} CCTK_ENDLOOP3_BND(name);

CCTK_LOOP3_INTBND(name, cctkGH, i,j,k, ni,nj,nk) {

... body of the loop

} CCTK_ENDLOOP3_INTBND(name);

In all cases, name should be replaced by a unique name for the loop. i, j, and k are names of variables that
will be declared and defined by these macros, containing the index of the current grid point. Similarly ni,
nj, and nk are names of variables describing the (outwards pointing) normal direction to the boundary
as well as the distance to the boundary.

C1.7.2 Coordinates

The flesh provides utility routines for registering and querying coordinate information. The flesh does
not provide any coordinates itself, these must be supplied by a thorn. Thorns are not required to register
coordinates to the flesh, but registering coordinates provides a means for infrastructure thorns to make
use of coordinate information.

Coordinates are grouped into coordinate systems, which have a specified dimension. Any number of
coordinate systems can be registered with the flesh, and a coordinate system must be registered before any

C35 C35/C82

C1.7. CACTUS APPLICATION INTERFACES CHAPTER C1. APPLICATION THORNS

coordinates can be registered, since they must be associated with their corresponding system. Coordinates
can be registered, with any chosen name, with an existing coordinate system, along with their direction
or index in the coordinate system. Optionally, the coordinate can also be associated with a given grid
variable. A separate call can register the global range for a coordinate on a given grid hierarchy.

Following conventions for coordinate system and coordinate names, provides a means for other thorns to
use the physical properties of coordinate systems, without being tied to a particular thorn.

A registered coordinate system can be referred to by either its name or an associated integer known as a
handle. Passing a handle instead of the name string may be necessary for calling C routines from Fortran.

Registering Coordinates and Coordinate Properties

The APIs described in this section are deprecated, and will probably be phased out fairly
soon. New code should use the APIs provided by the CoordBase thorn instead (this lives in
the CactusBase arrangement).

Coordinate systems and their properties can be registered at any time with the flesh. The registration
utilities for thorns providing coordinates are:

CCTK CoordRegisterSystem

Assigns a coordinate system with a chosen name and dimension. For example, a 3-
dimensional Cartesian coordinate system could be registered with the name cart3d
using the call from C

int ierr;

int dim=3;

ierr = CCTK_CoordRegisterSystem(dim,"cart3d");

CCTK CoordRegisterData

Defines a coordinate in a given coordinate system, with a given direction and name,
and optionally associates it to a grid variable. The directions of the coordinates
range from 1 to the dimension of the coordinate system. For example, to register
the grid variable grid::y3d to have the coordinate name y in the cart3d system

int ierr;

int dir=2;

ierr = CCTK_CoordRegisterData(dir,"grid::y3d","y","cart3d");

CCTK CoordRegisterRange

Assigns the global computational maximum and minimum for a coordinate on a
grid hierarchy, that is in a cctkGH. At this time the maximum and minimum values
have to be of type CCTK REAL. For example, if the y coordinate for the cart3d

system ranges between zero and one

CCTK_REAL lower=0;

CCTK_REAL upper=1;

int ierr;

ierr = CCTK_CoordRegisterRange(cctkGH, lower, upper, -1, "y", "cart3d");

Note that the API allows either the coordinate name or the direction to be used,
so that the following is also valid

C36 C36/C82

C1.7. CACTUS APPLICATION INTERFACES CHAPTER C1. APPLICATION THORNS

CCTK_REAL lower=0;

CCTK_REAL upper=1;

int ierr;

ierr = CCTK_CoordRegisterRange(cctkGH, lower, upper, 2, NULL, "cart3d");

CCTK CoordRegisterPhysIndex

Implementing such things as symmetry properties for a grid leads to the need to
know the details of the physical section of a grid. Such information is typically
needed by I/O thorns. The following call illustrates how to register the indices 3
and 25 as supplying the physical range of the y coordinate in the cart3d system

int loweri=3;

int upperi=25;

int ierr;

ierr = CCTK_CoordRegisterPhysIndex(cctkGH, loweri, upperi, -1, "y", "cart3d");

Using Coordinates

The APIs described in this section are deprecated, and will probably be phased out fairly
soon. New code should use the APIs provided by the CoordBase thorn instead (this lives in
the CactusBase arrangement).

The utilities for thorns using coordinates are:

CCTK NumCoordSystems

Returns the number of coordinate systems registered with the flesh. For example,

int num;

num = CCTK_NumCoordSystems();

CCTK CoordSystemName

Provides the name of a registered coordinate system, given the integer handle (or
index) for the system in the flesh’s coordinate data base. Note that the handle
ranges between zero and the number of coordinate systems minus one: 0 ≤ handle ≤
CCTK NumCoordSystems()− 1. It is important to remember that the handle given
to a coordinate system depends on the order in which systems are registered, and
can be different from one simulation to the next.

For example, to print the names of all registered coordinate systems:

for (i=0; i<CCTK_NumCoordSystems(); i++)

printf("%s ",CCTK_CoordSystemNName(i));

CCTK CoordSystemDim

Provides the dimension of a coordinate system. For example, if the cart3d system
was registered as having 3 dimensions, the variable dim below will now be set to 3,

int dim;

dim = CCTK_CoordSystemDim("cart3d");

CCTK CoordSystemHandle

Provides the integer handle for a given coordinate system name. The handle de-
scribes the index for the coordinate system in the flesh coordinate database, and
its value will range between zero and the number of registered systems minus one.
For example, the handle for the cart3d coordinate system can be found using

C37 C37/C82

C1.7. CACTUS APPLICATION INTERFACES CHAPTER C1. APPLICATION THORNS

int handle;

handle = CCTK_CoordSystemHandle("cart3d");

CCTK CoordSystemName

The inverse to the previous function call. This provides the name for a given
coordinate system handle. For example, to find the first coordinate system in the
flesh database

int handle = 0;

const char *name = CCTK_CoordSystemName(handle);

CCTK CoordIndex Provides the grid variable index for a given coordinate. Note that it is not necessary
for a registered coordinate to have an associated grid variable, and if no such grid
variable is found, a negative integer will be returned. For example, to find the grid
variable index associated with the y coordinate of the cart3d system, either of the
two following calls could be made

int index;

index = CCTK_CoordIndex(2,NULL,"cart3d");

int index;

index = CCTK_CoordIndex(-1,"y","cart3d");

CCTK CoordDir Provides the direction for a given coordinate. Directions are integers ranging from
one to the number of dimensions for the coordinate system. For example, to return
the direction of the y coordinate in the cart3d system

int dir;

dir = CCTK_CoordDir("y","cart3d");

The return of a negative integer indicates that the coordinate direction could not
be found.

CCTK CoordRange Provides the global range (that is, the minimum and maximum values across the
complete grid) of a coordinate on a given grid hierarchy. The minimum and maxi-
mum values must be of type CCTK REAL. The coordinate can be specified either by
name or by its direction. Note that this call takes the addresses of the minimum
and maximum values. For example, the range of the y coordinate of the cart3d

coordinate system can be found using

CCTK_REAL lower, upper;

int ierr;

ierr = CCTK_CoordRange(cctkGH, &lower, &upper, -1, "y", "cart3d");

or alternatively, using the direction

CCTK_REAL lower, upper;

int ierr;

ierr = CCTK_CoordRange(cctkGH, &lower, &upper, 2, NULL, "cart3d");

CCTK CoordLocalRange

Provides the local range of a coordinate on a processor for a given grid hierarchy.
WARNING: This utility only works for regular cartesian grids. For example, the
local processor range of the y coordinate of the cart3d coordinate system can be
found using

C38 C38/C82

C1.7. CACTUS APPLICATION INTERFACES CHAPTER C1. APPLICATION THORNS

CCTK_REAL lower, upper;

int ierr;

ierr = CCTK_CoordLocalRange(cctkGH, &lower, &upper, -1, "y", "cart3d");

or alternatively, using the direction

CCTK_REAL lower, upper;

int ierr;

ierr = CCTK_CoordLocalRange(cctkGH, &lower, &upper, 2, NULL, "cart3d");

CCTK CoordRangePhysIndex

For a given coordinate, provides the indices describing the physical range of the
coordinate. A negative return value signifies that no such range was registered for
the coordinate.

This index range provides a mechanism for describing grid points which should
not be considered part of the simulation results (for example, grid points used
for different boundary conditions). The physical range of the y coordinate of the
cart3d system can be found using

int ilower, iupper;

int ierr;

ierr = CCTK_CoordRangePhysIndex(cctkGH,&ilower,&iupper, -1, "y", "cart3d");

or using the coordinate direction

int ilower, iupper;

int ierr;

ierr = CCTK_CoordRangePhysIndex(cctkGH,&ilower,&iupper, 2, NULL, "cart3d");

CCTK CoordSystemImplementation

This call returns the name of the implementation which registered a coordinate
system. Note that there is no guarantee that a thorn, which registered a coordinate
system, is the same thorn which registers each of the coordinates in the system,
although this should usually be the case.

C1.7.3 I/O

To allow flexible I/O, the flesh itself does not provide any output routines, however it provides a mecha-
nism for thorns to register different routines as I/O methods (see Chapter C2.7). Application thorns can
interact with the different I/O methods through the following function calls:

CCTK OutputGH (const cGH *GH)

This call loops over all registered I/O methods, calling the routine that each method has registered
for OutputGH. The expected behaviour of any OutputGH routine is to loop over all GH variables,
outputting them if the I/O method contains appropriate routines (that is, not all methods will sup-
ply routines to output all different types of variables), and if the method decides it is an appropriate
time to output.

CCTK OutputVar (const cGH *GH, const char *varname)

Outputs a variable varname looping over all registered I/O methods. varname may have an optional
I/O option string appended. The output should take place if at all possible. If output goes into a
file and the appropriate file exists, the data is appended, otherwise a new file is created.

C39 C39/C82

C1.7. CACTUS APPLICATION INTERFACES CHAPTER C1. APPLICATION THORNS

CCTK OutputVarAs (const cGH *GH, const char *varname, const char *alias)

Outputs a variable varname looping over all registered I/O methods. varname may have an optional
I/O option string appended. The output should take place if at all possible. If output goes into
a file and the appropriate file exists, the data is appended, otherwise a new file is created. Uses
alias as the name of the variable for the purpose of constructing a filename.

CCTK OutputVarByMethod (const cGH *GH, const char *varname, const char *methodname)

Outputs a variable varname using the I/O method methodname if it is registered. varname may
have an optional I/O option string appended. The output should take place if at all possible. If
output goes into a file and the appropriate file exists, the data is appended, otherwise a new file is
created.

CCTK OutputVarAsByMethod (const cGH *GH, const char *varname, const char *methodname,

const char *alias)

Outputs a variable varname using the I/O method methodname if it is registered. varname may
have an optional I/O option string appended. The output should take place if at all possible. If
output goes into a file and the appropriate file exists, the data is appended, otherwise a new file is
created. Uses alias as the name of the variable for the purpose of constructing a filename.

C1.7.4 Interpolation Operators

The flesh does not provide interpolation routines by itself. Instead, it offers a general function API to
thorns, for the registration and invocation of interpolation operators.

There are two different flesh APIs for interpolation, depending on whether the data arrays are Cactus
grid arrays or processor-local, programming language built-in arrays, and on what assumptions are made
about the topology and spacing of the grid (these descriptions are for 3D, but the generalisations to other
numbers of dimensions should be obvious):

CCTK InterpGridArrays()

Interpolates Cactus grid arrays, with the topology of the grid implicitly specified
by a Cactus coordinate system.

This API doesn’t provide an interpolation functionality itself, it only takes care
of the interprocessor communication necessary when interpolating distributed grid
arrays, and invokes the CCTK InterpLocalUniform() API on the each processor’s
local patch of the data.

CCTK InterpLocalUniform()

Interpolates processor-local arrays with uniformly spaced data points, i.e. where the
coordinates xyz are related to the integer array subscripts ijk by linear functions

x = originx + deltaxi

y = originy + deltayj

z = originz + deltazk

where the caller specifies the origin and delta values.

The flesh provides an API to register local interpolation operators:

CCTK InterpRegisterOpLocalUniform()

Register a CCTK_InterpLocalUniform() interpolation operator

C40 C40/C82

C1.7. CACTUS APPLICATION INTERFACES CHAPTER C1. APPLICATION THORNS

This is described in detail in the Reference Manual.

Each local interpolation operator is registered under a character string name; at registration, the name is
mapped to a unique integer handle, which may be used to refer to the operator. CCTK_InterpHandle()

is used to get the handle corresponding to a given character string name.

C1.7.5 Reduction Operators

A reduction operation can be defined as an operation on variables distributed across multiple processor
resulting in a single number. Typical reduction operations are: sum, minimum/maximum value, and
boolean operations. A typical application is, for example, finding the maximum reduction from processor
local error estimates, therefore, making the previous processor local error known to all processors.

The exchange of information across processors needs the functionality of a communication layer, e.g.
CactusPUGH/PUGH. For this reason, the reduction operation itself is not part of the flesh, instead, Cac-
tus (again) provides a registration mechanism for thorns to register routines they provide as reduction
operators. The different operators are identified by their name and/or a unique number, called a handle.

The registration mechanism gives the advantage of a common interface while hiding the individual com-
munication calls in the layer.

In Cactus, reduction operators can be applied to grid functions, arrays and scalars, as well as to local
arrays. Note that different implementations of reduction operators may be limited in the objects they
can be applied to. There is a fundamental difference between the reduction operation on grid functions
and quantities as arrays.

Currently the flesh supports the new and old reduction specification. The old APIs will be deprecated in
the next beta cycle in favour of the new specification.

New Reduction Specification API documentation

In the new reduction specification, there are two different flesh APIs for reduction, depending on whether
the data arrays are Cactus grid arrays or processor-local, programming language built-in arrays, and on
what assumptions are made about the topology and spacing of the grid (these descriptions are for 3D,
but the generalisations to other numbers of dimensions should be obvious):

CCTK ReduceGridArrays()

Reduces Cactus grid arrays, with the topology of the grid implicitly specified by a
Cactus coordinate system.

This API doesn’t provide a reduction functionality itself, it only takes care of the
interprocessor communication necessary when reducing distributed grid arrays, and
invokes the CCTK ReduceLocalArrays() API on the each processor’s local patch of
the data.

CCTK ReduceLocalArrays()

Reduces processor-local arrays with various options including offsets, strides and
masks.

The flesh provides an API to register local reduction operators:

C41 C41/C82

C1.7. CACTUS APPLICATION INTERFACES CHAPTER C1. APPLICATION THORNS

CCTK RegisterLocalArrayReductionOperator()

Register a CCTK_ReduceLocalArrays() interpolation operator

This is described in detail in the Reference Manual.

Each local reduction operator is registered under a character string name; at registration, the name is
mapped to a unique integer handle, which may be used to refer to the operator. CCTK_LocalArrayReductionHandle()
is used to get the handle corresponding to a given character string name.

Old Reduction Specification API Documentation

Obtaining the reduction handle

Before calling the routine which performs the reduction operation, the handle, which identifies the oper-
ation, must be derived from its registered name.

int CCTK_ReductionHandle(const char *reduction_name);

integer reduction_handle

character*(*) reduction_name

call CCTK_ReductionHandle(reduction_handle, reduction_name)

int CCTK_ReductionArrayHandle(const char *reduction_name);

integer reduction_handle

character*(*) reduction_name

call CCTK_ReductionArrayHandle(reduction_handle, reduction_name)

reduction handle in Fortran, the name of the variable will contain the handle value after the call. In
C, this value is the function value.

reduction name is the name under which the operator has been registered by the providing thorn.
The only thorn in the standard Computational Toolkit release, which provides
reduction operators, is CactusPUGH/PUGHReduce.

error checking negative handle value indicates failure to identify the correct operator.

Get a integer handle corresponding to a given reduction operator. The operator is identified by the name
it was registered with. (Note that although it would appear to be far more convenient to pass the name
of the reduction operator directly to the following function call to CCTK Reduce this causes problems with
the translation of strings from Fortran to C with variable argument lists).

The general reduction interface. The main interfaces for reduction operations are quite powerful
(and hence rather complicated). To ease the use of these main interfaces, wrappers designed for specific
and more restricted use are described below. If uncertain, you should use these.

int CCTK_Reduce(const cGH *GH,

C42 C42/C82

C1.7. CACTUS APPLICATION INTERFACES CHAPTER C1. APPLICATION THORNS

int proc,

int operation_handle,

int num_out_vals,

int type_out_vals,

void *out_vals,

int num_in_fields,

...);

call CCTK_Reduce(int returnvalue,

cctkGH,

int processor,

int operation_handle,

int num_out_vals,

int type_out_vals,

out_vals,

int num_in_fields,

...)

int CCTK_ReduceArray(const cGH *GH,

int proc,

int operation_handle,

int num_out_vals,

int type_out_vals,

void *out_vals,

int num_dims,

int num_in_arrays,

int type_in_arrays,

...)

call CCTK_ReduceArray(int returnvalue,

cctkGH,

int processor,

int operation_handle,

int num_out_vals,

int type_out_arrays,

void out_vals,

int num_dims,

int num_in_arrays,

int type_in_arrays,

...)

int returnvalue the return value of the operation. Negative value indicates failure to perform re-
duction. Zero indicates a successful operation.

cctkGH in Fortran, the pointer to the grid hierarchy structure. Can not be used within
Fortran, but can be used from within C. Since this name is fixed, write it out as
shown.

cGH *GH in C, it is the pointer to the grid hierarchy.

int processor the processor which collects the information, a negative value (−1) will distribute
the data to all processors.

C43 C43/C82

C1.7. CACTUS APPLICATION INTERFACES CHAPTER C1. APPLICATION THORNS

int operation handle

the number of the reduction operation handle, needs to be found by calling CCTK ReductionHandle

or CCTK ReductionArrayHandle.

int num out vals integer defining the number of output values.

int type out arrays, type in arrays

specifies the type of the gridfunction you are communicating. Use the values as
specified in Section C1.9.8. Note: Do not mix data types, e.g. in Fortran, do not
declare a variable as integer and then specify the type CCTK VARIABLE INT in the
reduction command. These types need not be the same on some architectures and
will conflict.

out vals an array that will contain the output values.

int num in fields specifies the number of input fields.

... indicates a variable argument list: specify the arrays which will be reduced, the
number of specified arrays must be the same as the value of the num in fields

variable.

error checking a return value, other than zero, indicates failure to perform the operation.

Special reduction interfaces. The routines are designed for the purpose of reducing scalars, arrays
and grid functions. They hide many of the options of the generic interface described above.

Reduction of local scalars across multiple processors. The result of the reduction operation will
be on the specified processor or on all processors.

int CCTK_ReduceLocScalar (const cGH *GH,

int processor,

int operation_handle,

void *in_scalar,

void *out_scalar,

int data_type)

call CCTK_ReduceLocScalar(int returnvalue,

cctkGH,

int processor,

int operation_handle,

in_scalar,

out_scalar,

int data_type)

in scalar the processor local variable with local value to be reduced

out scalar the reduction result: a processor local variable with the global value (same on all
processors), if processor has been set to −1. Otherwise, processor will hold the
reduction result.

data type specifies the type of the gridfunction you are communicating. Use the values as
specified in Section C1.9.8.

C44 C44/C82

C1.7. CACTUS APPLICATION INTERFACES CHAPTER C1. APPLICATION THORNS

Reduction of local 1d arrays to a local arrays. This reduction is carried out element by element.
The arrays need to have the same size on all processors.

int CCTK_ReduceLocArrayToArray1D(const cGH *GH,

int processor,

int operation_handle,

void *in_array1d,

void *out_array1d,

int xsize,

int data_type)

call CCTK_ReduceLocArrayToArray1D(int returnvalue

cctkGH,

int processor,

int operation_handle,

in_array1d,

out_array1d,

int xsize,

int data_type)

in array1d one dimensional local arrays to be reduced across a processors, element by element.

out array1d array holding the reduction result. out array1d[1] = Reduction(in array[1]).

xsize the size of the one dimensional array.

Reduction of local 2d arrays to a local 2d array. This reduction is carried out element by element.
The arrays need to have the same size on all processors.

int CCTK_ReduceLocArrayToArray2D(const cGH *GH,

int processor,

int opertaion_handle,

in_array_2d,

out_array2d,

int xsize,

int ysize,

int data_type)

call CCTK_ReduceLocArrayToArray2D(int returnvalue

cctkGH,

int processor,

int operation_handle,

in_array2d,

out_array2d,

int xsize,

int ysize,

int data_type)

C45 C45/C82

C1.7. CACTUS APPLICATION INTERFACES CHAPTER C1. APPLICATION THORNS

in array1d two dimensional local arrays, to be reduced across a processors, element by element.

out array1d two dimensional array holding the reduction result. out array2d[i,j]= Reduction(in array2d[i,j]).

xsize the size of the one dimensional array in x direction.

ysize the size of the one dimensional array in y direction.

Reduction of local 3D arrays to a local 3D array. This reduction is carried out element by element.
The arrays need to have the same size on all processors.

int CCTK_ReduceLocArrayToArray3D(const cGH *GH,

int processor,

int opertaion_handle,

in_array_3d,

out_array3d,

int xsize,

int ysize,

int zsize,

int data_type)

call CCTK_ReduceLocArrayToArray3D(int returnvalue

cctkGH,

int processor,

int operation_handle,

in_array3d,

out_array3d,

int xsize,

int ysize,

int zsize,

int data_type)

in array3d two dimensional local arrays, to be reduced across a processors, element by element.

out array3d two dimensional array holding the reduction result. out array3d[i,j,k]= Reduc-
tion(in array3d[i,j,k]).

xsize the size of the one dimensional array in x direction.

ysize the size of the one dimensional array in y direction.

ysize the size of the one dimensional array in z direction.

Some brief examples:

Reduction of a local scalars: a local error is reduced across all processors with the maximum operation.
The variable tmp will hold the maximum of the error and is the same on all processors. This quantity
can then be reassigned to normerr.

CCTK_REAL normerr, tmp

integer ierr, reduction_handle

C46 C46/C82

C1.8. COMPLETING A THORN CHAPTER C1. APPLICATION THORNS

call CCTK_ReductionArrayHandle(reduction_handle,"maximum")

if (reduction_handle.lt.0) then

call CCTK_WARN(CCTK_WARN_ALERT, "Cannot get reduction handle for maximum operation.")

endif

call CCTK_ReduceLocScalar(ierr, cctkGH, -1,

. reduction_handle,

. normerr, tmp, CCTK_VARIABLE_REAL)

if (ierr.ne.0) then

call CCTK_WARN(CCTK_WARN_ALERT, "Reduction of norm failed!");

endif

normerr = tmp

Reduction of a local 2D array: a two dimensional array (2 × 3) is reduced, reduction results (array
of same size: bla tmp) are seen on all processors (−1 entry as the third argument); also demonstrates
some simple error checking with the CCTKi EXPECTOK macro.

CCTK_REAL bla(2,3),bla_tmp(2,3);

integer ierr, sum_handle

call CCTK_ReductionArrayHandle(sum_handle,"sum")

bla = 1.0d0

write (*,*) "BLA ",bla

call CCTK_ReduceLocArrayToArray2D(ierr, cctkGH, -1, sum_handle,

. bla, bla_tmp, 2, 3, CCTK_VARIABLE_REAL)

call CCTKi_EXPECTOK(ierr, 0, 1, "2D Reduction failed")

bla = bla_tmp

write (*,*) "BLA ",bla

Note that the memory for the returned values must be allocated before the reduction call is made.

C1.8 Completing a Thorn

C1.8.1 Commenting Source Code

Note that since most source files (see Section C1.2.4 for exceptions) pass through a C preprocessor, C
style comments can be used in Fortran code. Note that C++ comments (those ones starting with “//”),
should only be used in C++ source code.

The flesh and the Cactus thorns use the grdoc Code Documenting System
(http://jean-luc.aei.mpg.de/Codes/grdoc/) to document source code.

C47 C47/C82

http://jean-luc.aei.mpg.de/Codes/grdoc/

C1.8. COMPLETING A THORN CHAPTER C1. APPLICATION THORNS

C1.8.2 Providing Runtime Information

To write from thorns to standard output (i.e. the screen) at runtime, use the macro CCTK INFO or the
function CCTK VInfo().

For example, from the Fortran thorn MyThorn,

call CCTK_INFO("Starting Tricky Calculation")

will write the line:

INFO (MyThorn): Starting Tricky Calculation

For a multiprocessor run, only runtime information from processor zero will be printed to screen by
default. The standard output of other processors will usually be discarded unless the “-r” command line
option is used (Section B3.1).

Note that the routine CCTK VInfo() can only be called from C, because Fortran doesn’t know about
variable argument lists. So, including variables in the info message using CCTK INFO is currently more
tricky, since you need to build the string to be output.

For example, in C you would just write

int myint;

CCTK_VInfo(CCTK_THORNSTRING, "The integer is %d", myint);

But in Fortran you have to do the following

integer myint

character*200 message

write (message, ’("The integer is ",i4)’) myint

call CCTK_INFO (message)

Note that

• CCTK INFO is a macro which expands to a call to the internal function CCTK Info() and automati-
cally includes the thorn name in function call.

• CCTK INFO should be used rather than print statements, since it will give consistent behaviour on
multiprocessors, and also provides a mechanism for switching the output to screen on and off, even
on a thorn-by-thorn basis. (Although this is not yet implemented).

C1.8.3 Error Handling, Warnings and Code Termination

The Cactus function CCTK VError(), and its accompanying CCTK ERROR macro, should be used to output
error messages and abort the code.

C48 C48/C82

C1.8. COMPLETING A THORN CHAPTER C1. APPLICATION THORNS

The Cactus function CCTK VWarn(), and its accompanying CCTK WARN macro, should be used to issue
warning messages during code execution.

Along with the warning message, an integer is given to indicate the severity of the warning. Only warnings
with severity levels less than, or equal to, the global Cactus warning level threshold2 will be printed. A
level 0 warning indicates the highest severity (and is guaranteed to abort the Cactus run), while larger
numbers indicate less severe warnings. The global Cactus warning level threshold defaults to 1, i.e. level 1
warnings are printed, but level 2 and higher are not printed.

The severity level may actually be any integer, and a lot of existing code uses bare “magic number” integers
for warning levels, but to help standardize warning levels across thorns, new code should probably use
one of the following macros, defined in "cctk_WarnLevel.h" (which is #included by "cctk.h"):

#define CCTK_WARN_ABORT 0 /* abort the Cactus run */

#define CCTK_WARN_ALERT 1 /* the results of this run will probably */

/* be wrong, but this isn’t quite certain, */

/* so we’re not going to abort the run */

#define CCTK_WARN_COMPLAIN 2 /* the user should know about this, but */

/* the results of this run are probably ok */

#define CCTK_WARN_PICKY 3 /* this is for small problems that can */

/* probably be ignored, but that careful */

/* people may want to know about */

#define CCTK_WARN_DEBUG 4 /* these messages are probably useful */

/* only for debugging purposes */

For example, to provide a warning for a serious problem, which indicates that the results of the run are
quite likely wrong, and which will be printed to the screen by default, a level CCTK_WARN_ALERT warning
should be used.

The syntax from Fortran is

call CCTK_WARN(CCTK_WARN_ALERT, "Your warning message")

call CCTK_ERROR("Your error message")

and from C

CCTK_WARN(CCTK_WARN_ALERT, "Your warning message");

CCTK_ERROR("Your error message");

Note that CCTK ERROR and CCTK WARN are macros which expand to calls to an internal function. The
macros automatically include the thorn name, the source code file name and line number in the message.3

2As discussed in Section B3.1 of this manual, the Cactus warning level threshold is set with the -W or -warning-level

command-line option when running Cactus; see Section B3.1.
3In calling CCTK VError() or CCTK VWarn(), you need to provide this information yourself. Cactus provides the macro

CCTK THORNSTRING, which is the character-string name of the current thorn. In C, you can get the source file name and line
number from the predefined preprocessor macros FILE and LINE , respectively. In Fortran you’re out of luck. :(

C49 C49/C82

C1.8. COMPLETING A THORN CHAPTER C1. APPLICATION THORNS

(For this reason it is important for Fortran code that capital letters are always used in order to expand
the macro.)

If the flesh parameter cctk full warnings is set to true, then the source file name and line number
will be printed to standard error along with the originating processor number, the thorn name and the
warning message. The default is to omit the source file name and line number.

Note that the routines CCTK VError() and CCTK VWarn() can only be called from C, because For-
tran doesn’t know about variable argument lists. So including variables in the warning message using
CCTK ERROR or CCTK WARN, is currently more tricky since you need to build the string to be output.

For example, in C you would just write

int myint;

double myreal;

CCTK_VWarn(CCTK_WARN_ALERT, __LINE__, __FILE__, CCTK_THORNSTRING,

"Your warning message, including %f and %d",

myreal, myint);

But in Fortran you have to do the following

integer myint

real myreal

character*200 message

write (message, ’("Your warning message, including ",g12.7," and ",i8)’) myreal, myint

call CCTK_WARN (CCTK_WARN_ALERT, message)

Beside the default methods to handle error, warning, and information messages, the flesh also implements
a callback scheme to let thorn writers get information and warning messages as they are produced.4

For warning messages, a function with the following prototype

void my_warnfunc(int level,

int line,

const char *file,

const char *thorn,

const char *message,

void *data);

should be implemented, and then registered with

CCTK_WarnCallbackRegister(int minlevel,

int maxlevel,

void *data,

cctk_warnfunc my_warnfunc);

4For the moment, these functions can only be used from C.

C50 C50/C82

C1.8. COMPLETING A THORN CHAPTER C1. APPLICATION THORNS

The data pointer can be used to pass arbitrary information to the registered function, e.g. a file descriptor
or a format string.

Multiple functions can be registered as above; when CCTK VWarn() is called, all the registered functions
will be called, if the warning is within the minimum and maximum levels indicated.

The basic procedure is exactly the same for information messages.

A function registered for information messages will look like

void my_infofunc(const char *thorn,

const char *message,

void *data);

while the registration function looks like

CCTK_InfoCallbackRegister(void *data, cctk_infofunc my_infofunc);

C1.8.4 Adding Documentation

Documentation is a vital part of your thorn, helping to ensure its ease of use and longevity, not only for
others, but also for the thorn authors. Although any kind of independent documentation can be added
to a thorn (ideally in the doc directory), there are two standard places for adding thorn documentation,
a README and a doc/documentation.tex file for including in Thorn Guides.

README

The README, in the top level of a thorn, should contain brief and essential details about the thorn, such
as the authors, any copyright details, and a synopsis of what the thorn does.

Contribution to Thorn Guide

The LaTeX file, doc/documentation.tex, is included in Thorn Guides built by the Cactus make system.
(e.g. by gmake <config>-ThornGuide). Ideally this file should contain complete (and up-to-date) details
about the thorn, exactly what is relevant is for the authors to decide, but remember that the Cactus make
system automatically parses the thorn CCL files to include information about all parameters, variables
and scheduling. Suggested sections include:

• Model. A description of the system which the thorn is modelling, including the equations, etc.,
which are being solved or implemented.

• Numerical implementation. Details about how the model is numerically implemented in the
thorn.

• Using the thorn. Any special details needed for using the thorn, tricky parameters, particular
operating systems or additional required software, interactions with other thorns and examples of
use.

C51 C51/C82

C1.8. COMPLETING A THORN CHAPTER C1. APPLICATION THORNS

• History. Here is where you should describe why the thorn was written, any previous software or
experience which was made use of, the authors of the thorn source code and documentation, how
to get hold of the thorn, etc.

• References. A bibliography can be included, referencing papers published using or about this
thorn, or additional information about the model or numerics used.

A LaTeX template for the Thorn Guide documentation can be found in the flesh distribution at

doc/ThornGuide/template.tex,

this file is automatically copied to the correct location in a new thorn which is created with gmake

newthorn.

Since Cactus scripts need to parse this documentation, and since the LaTeX document should be consis-
tent across all thorns included in a Thorn Guide, please follow the guidelines below when filling in the
documentation:

• Use the Cactus Thorn Guide style file, located in the flesh distribution at doc/latex/cactus.sty.
This should be included using a relative link, so that updates to the style file are applied to all
thorns.

\usepackage{../../../../doc/latex/cactus}

• Aside from the date, author, and title fields, all of the documentation to be included in a Thorn
Guide should be placed between the lines

% START CACTUS THORNGUIDE

and

% END CACTUS THORNGUIDE

• The command \def can be used to define macros, but all such definitions must lie between the
START and END line. Do not redefine any standard LaTeX command

• Do not use the \appendix command, instead include any appendices you have as standard sections.

• We only support PDF (.pdf) figures. Graphics figures should be included using the includegraphics
command (not epsffig), with no file extension specified. For example,

\begin{figure}[ht]

\begin{center}

\includegraphics[width=6cm]{MyArrangement_MyThorn_MyFigure}

\end{center}

\caption{Illustration of this and that}

\label{MyArrangement_MyThorn_MyLabel}

\end{figure}

• All labels, citations, references, and graphic images names should conform to the following
guidelines: ARRANGEMENT THORN LABEL. For instance, if you arrangement is called CactusWave,
your thorn WaveToyC, and your original image blackhole.eps, you should rename your image to be
CactusWave WaveToyC blackhole.eps

• References should be formatted with the standard LaTeX bibitem command, for example, a bib-
liography section should look like:

C52 C52/C82

C1.8. COMPLETING A THORN CHAPTER C1. APPLICATION THORNS

\begin{thebibliography}{9}

\bibitem{MyArrangement_MyThorn_Author99}

{J. Author, \textit{The Title of the Book, Journal, or periodical}, 1 (1999),

1--16. \url{http://www.nowhere.com/}}

\end{thebibliography}

C1.8.5 Adding a Test Suite

To add a test suite to your thorn, devise a series of parameter files which use as many aspects of your
thorn as possible. Make sure that the parameter files produce ASCII output to files, and that these files
are in the directory ./<parameter file base name>.

Run Cactus on each of the parameter files, and move the parameter files, and the output directories they
produced, to the test directory in your thorn.

Document carefully any situations or architectures in which your test suite does not give the correct
answers.

You can also specify options for running your testsuite by adding an optional configuration file called
test.ccl in the test directory. These are simple text files and may contain comments introduced by the
hash ‘#’ character, which indicates that the rest of the line is a comment. If the last non-blank character
of a line in a config file is a backslash ‘\’, the following line is treated as a continuation of the current
line. Options include test specific absolute and relative tolerances, thorn specific absolute and relative
tolerances, the number of processors required to run, and file extensions. The configuration file has the
form:

ABSTOL <thorn_absolute_tolerance> [filename_pattern]

RELTOL <thorn_relative_tolerance> [filename_pattern]

NPROCS <thorn_nprocs>

EXTENSIONS <extension_1 extension_2 extension_3>

TEST <test_example>

{
ABSTOL <absolute_tol> [filename_pattern]

RELTOL <relative_tol> [filename_pattern]

NPROCS <nprocs>

}

which states that when comparing files of test test_example, both absolute_tol and relative_tol

should be used as the absolute and relative tolerances. For all other tests in the thorn, the default value of
absolute and relative tolerances are set to thorn_absolute_tolerance and thorn_relative_tolerance.
Both absolute and relative tolerances can be specified on a per-file bases by supplying an optional
filename_pattern regular expression to match against a filename and the tolerance value. The specified
tolerances override more general tolerances for data files whose name matches these regular expressions.
Any set of characters can be used for matching as long as there are no whitespaces in the regular expres-
sion.

For example:

ABSTOL 1e-8 ^Psi4\.[xy]

C53 C53/C82

C1.8. COMPLETING A THORN CHAPTER C1. APPLICATION THORNS

RELTOL 1e-12 gxx

More specific tolerances can be specified for all the tests of a thorn or just within a test’s block. It is an
error if a regular expression matches more than one filename. The NPROCS option specifies the number
of processors required to run a given testsuite test example or all testsuites of a thorn successfully. If
no NPROCS option is present, the testsuite(s) is (are) assumed to run with any number of processors. The
EXTENSIONS option adds extension_1, extension_2 and extension_3 to the list of file extensions that
are compared. This list is global over all tests in a configuration.

Test specific tolerances have precedence over all tolerances, next come thorn wide tolerances, and then
cactus default tolerances. Absolute and relative tolerances are independent: you can choose to use test
specific absolute tolerance and thorn specific relative tolerance when running a test. For example,

TEST test_rad

{
ABSTOL 1e-5

}

ABSTOL 1e-8

RELTOL 1e-12

would use an absolute tolerance of 10−5 and a relative tolerance of 10−12 when running test_rad and
an absolute tolerance of 10−8 and a relative tolerance of 10−12 when running all other tests.

For details on running the test suites, see Section B2.6.

Best Practices for Test Suites

When writing a test suite, there are a few things you should keep in mind:

• The test suite will be run together with many other test suites. It should, therefore, finish quickly
(say, in under two minutes), and not use too much memory (so that it can run on a “normal”
workstation).

• The test suite will be run automatically, often in situations where no one checks the screen output.
All important output should be via grid variables that are written to files. Alternatively, if the test
suite tests some low-level infrastructure, it may just abort the simulation if it fails; that will also
be detected.

• Downloading many files is slow on many systems. A test suite should normally not have more than,
say, hundred output files, and normally the output files should be small, so that there are not more
than a few Megabytes of output files per test suite.

• The test suite output files should always be the same. That means that they should not contain
time stamps, etc. It is, therefore, best to use the option IO::out_fileinfo="none".

• Norms are unfortunately quite insensitive to changes to a few grid points only, even if the changes
are significant. It is necessary to output grid point values directly, not only norms.

• Try to use as few thorns as possible in a test case. For example, do not active 3D output thorns
(unless you use it). The fewer thorns you use, the easier it is to run the test suite.

C54 C54/C82

C1.9. ADVANCED THORN WRITING CHAPTER C1. APPLICATION THORNS

• It is not necessary that a test suite result is “physically correct”, or that it uses parameters that
ensure a stable time evolution. A test suite will usually take only a few time steps, so that a grid
size of, e.g. 203 grid points without dissipation can be sufficient. Test suites cannot test whether
the result of a simulation is physically feasible; they only test whether anything changed at all.
Ensuring that the physics is still correct has to be handled by different mechanisms.

C1.9 Advanced Thorn Writing

C1.9.1 Using Cactus Timers

What are Timers?

Cactus provides a flexible mechanism for timing different sections of your thorns using various clocks
which have been registered with the flesh. By default, the flesh provides two clocks that measure time in
different ways (provided the underlying functionality is available on your system):

GetTimeOfDay Provides “wall clock time” via the unix gettimeofday function.

GetrUsage Provides CPU usage time via the unix getrusage function.

Additional clocks can be implemented by thorns and registered with the flesh (see Chapter C2.9).

To use Cactus timing, you create a timer, which provides time information for all the registered clocks.

You can add any number of timers to your thorn source code, providing each with a name of your choice,
and then use Cactus timing functions to switch on the timers, stop or reset them, and recover timing
information.

Setting the flesh parameter cactus::cctk timer output = "full" will cause some summary timing
information to be printed at the end of a run. Some other thorns have their own timer printing parameters
as well.

Timing Calls

Many of the timing calls come in two versions, one whose name ends with the letter I, and one without.
The calls whose names end with the letter I refer to the timer or clock by index, which is a non-negative
int value; the other calls refer to a timer by name. If a timer is created without a name, it can be referred
to only by its index, otherwise, it can be referred to by name or by index.

Typically, a negative return value from a timer function indicates an error.

CCTK TimerCreate, CCTK TimerCreateI

Create a timer with a given name, or with no name (respectively) and return a
timer index or an error code. Negative return values indicate errors. Only one
timer with a given name can exist at any given time.

CCTK TimerDestroy, CCTK TimerDestroyI

Reclaim resources used by a timer.

C55 C55/C82

C1.9. ADVANCED THORN WRITING CHAPTER C1. APPLICATION THORNS

CCTK TimerStart, CCTK TimerStartI

Start the given timer, using all registered clocks.

CCTK TimerStop, CCTK TimerStopI

Stop the given timer on all registered clocks.

CCTK TimerReset, CCTK TimerResetI

Reset the given timer on all registered clocks.

CCTK TimerCreateData, CCTK TimerDestroyData

Allocate and reclaim (respectively) resources for a cTimerData structure, which
will be used to hold clock values.

CCTK Timer, CCTK TimerI

Fill the given cTimerData structure with clock values as of the last call to CCTK TimerStop.

CCTK NumTimers Return the number of created timers

CCTK TimerName Return the name of the timer for a given timer index (or NULL if the timer is
unnamed or any other error occurs).

CCTK NumTimerClocks

Take a pointer to cTimerData and return the number of clocks recorded in a timer
measurement

CCTK GetClockValue, CCTK GetClockValueI

Given a clock referred to by name or index, respectively, and a cTimerData pointer,
return a cTimerVal pointer representing the value of the clock when the timer was
stopped

CCTK TimerClockName

Return the name of the clock given by the cTimerVal pointer argument.

CCTK TimerClockResolution

Return the floating-point value of the resolution in seconds of the clock referred
to by the cTimerVal pointer argument. This is a lower bound for the smallest
non-zero difference in values between calls of CCTK TimerClockSeconds.

CCTK TimerClockSeconds

Return the floating-point value of the measurement in seconds from the cTimerVal

pointer argument.

How to Insert Timers in your Code

The function prototypes and structure definitions are contained in the include file cctk Timers.h, which
is included in the standard thorn header file cctk.h. At the moment, the timer calls are only available
from C.

The following example, which uses a timer to instrument a section of code, illustrates how timers are
used by application thorns. A working example is available in the thorn CactusTest/TestTimers.

Creating a timer

The first action for any timer is to create it, using CCTK TimerCreate. This can be performed at any
time prior to use of the timer:

#include "cctk_Timers.h"

index = CCTK_TimerCreate("TimeMyStuff");

C56 C56/C82

C1.9. ADVANCED THORN WRITING CHAPTER C1. APPLICATION THORNS

Instrumenting a section of code

Code sections are instrumented using the Start, Stop and Reset functions. These functions are applied
to the chosen timer using all the registered clocks.

ierr = CCTK_TimerStart("TimeMyStuff");

do_procedure_to_be_timed();

ierr = CCTK_TimerStop("TimeMyStuff");

Accessing the timer results

After calling CCTK TimerStop, you then get the time value from any of the registered clocks.

The procedure is to allocate a cTimerData structure, and read the information from your timer into this
structure using CCTK Timer, then to extract time data of the desired clock from this structure. After
using the structure, you should destroy it.

cTimerData *info = CCTK_TimerCreateData();

int ierr = CCTK_Timer("TimeMyStuff",info);

/* You can refer to a particular clock by name. */

const cTimerVal *clock = CCTK_GetClockValue("gettimeofday", info);

if(clock){

printf ("\t%s: %.3f %s\n", "gettimeofday",

CCTK_TimerClockSeconds(clock), "secs");

}

/* To get results from all available clocks, refer to them by index.*/

nclocks = CCTK_NumTimerClocks(info);

for (i = 0; i < numclocks; i++) {

const cTimerVal *clock = CCTK_GetClockValueI(i, info);

printf ("\t%s: %.3f %s\n", CCTK_TimerClockName(clock),

CCTK_TimerClockSeconds(clock), "secs");

}

CCTK_TimerDestroyData (info);

C1.9.2 Include Files

Cactus provides a mechanism for thorns to add code to include files which can be used by any other thorn.
Such include files can contain executable source code, or header/declaration information. A distinction
is made between these two cases, since included executable code is protected from being run if a thorn is
compiled, but not active by being wrapped by a call to CCTK IsThornActive.

Any thorn which uses the include file must declare this in its interface.ccl with the line

USES INCLUDE [SOURCE|HEADER]: <file_name>

(If the optional [SOURCE|HEADER] is omitted, HEADER is assumed. Note that this can be dangerous,
as included source code, which is incorrectly assumed to be header code, will be executed in another

C57 C57/C82

C1.9. ADVANCED THORN WRITING CHAPTER C1. APPLICATION THORNS

thorn even if the providing thorn is inactive. Thus, it is recommended to always include the optional
[SOURCE|HEADER] specification.) Any thorn that wishes to add to this include file, declares in its own
interface.ccl

INCLUDE [SOURCE|HEADER]: <file_to_include> in <file_name>

Example As an example of this in practice, for the case of Fortran code, consider a thorn A, which
wants to gather terms for a calculation from any thorn that wishes to provide them. Thorn A could have
the lines in its source code

c Get source code from other thorns

allterms = 0d0

#include "AllSources.inc"

and would then add to interface.ccl the line

USES INCLUDE SOURCE: AllSources.inc

If thorn B wants to add terms for the calculation, it would create a file, say Bterms.inc with the lines

c Add this to AllSources.inc

allterms = allterms + 1d0

and would add to its own interface.ccl

INCLUDE SOURCE: Bterms.inc in AllSources.inc

The final file for thorn A which is compiled, will contain the code

c Get source code from other thorns

allterms = 0d0

if (CCTK_IsThornActive("B").ne.0) then

c Add this to AllSources.inc

allterms = allterms + 1d0

end if

Any Fortran thorn routines which include source code must include the declaration DECLARE CCTK FUNCTIONS.

C1.9.3 Memory Tracing

Cactus provides a mechanism for overriding the standard C memory allocation routines (malloc, free,

. . .) with Cactus specific routines that track the amount of memory allocated, and from where, the
allocation call was made. This information can be accessed by the user to provide an understanding of
the memory consumption between two instances, and to track down possible memory leaks. This feature
is available in C only.

C58 C58/C82

C1.9. ADVANCED THORN WRITING CHAPTER C1. APPLICATION THORNS

Activating Memory Tracing

Memory tracing has to be activated at configure time. The standard malloc statements are overridden
with macros (CCTK MALLOC). To activate memory tracing use either

DEBUG=all Enables all debug options (compiler debug flags, redefines malloc)

DEBUG=memory Redefine malloc only.

The CCTK MALLOC statements can also be used directly in the C code. But by employing them this way,
only a fraction of the total memory consumption is traced. Also, they cannot be turned off at configure
time. For example:

machine> gmake bigbuild DEBUG=yes

machine> gmake bigbuild-config DEBUG=memory

The new configuration bigbuild is configured with all debugging features turned on. The already existing
configuration bigbuild is reconfigured with memory tracing only.

Using Memory Tracing

You can request Cactus to store the memory consumption at a certain instance in the program flow, and
return the difference in memory allocation some time later.

int CCTK MemTicketRequest(void)

Request a ticket: save the current total memory to a database. Return an integer
(ticket). Use the ticket to calculate the difference in memory allocation between
the two instances in CCTK MemTicketCash.

long int CCTK MemTicketCash(int your ticket)

Cash in your ticket: return the memory difference between now and the time the
ticket was requested. Tickets can be cashed in several times. See example below.
This only tracks the real data memory, which is the same as in undebug mode. It
does not keep track of the internal allocations done to provide the database, the
motivation is that this is not allocated either if you compile undebugged.

int CCTK MemTicketDelete(int your ticket)

Delete the memory ticket. The ticket ID will not be reused, since it’s incremented
with every ticket request, but the memory of the memory datastructure is deallo-
cated.

unsigned long int CCTK TotalMemory(void)

Returns the total allocated memory (not including the tracing data structures).

void CCTK MemStat Prints an info string, stating the current, past, and total memory (in bytes) alloca-
tion between two successive calls to this routine, as well as the difference.

Sample C code demonstrating the ticket handling. Two tickets are requested during malloc operations.
The CCTK MALLOC statement is used directly. They are cashed in, and the memory difference is printed.
Ticket 1 is cashed twice. The tickets are deleted at the end.

C59 C59/C82

C1.9. ADVANCED THORN WRITING CHAPTER C1. APPLICATION THORNS

int ticket1;

int ticket2;

/* store current memstate, ticket: t1*/

t1 = CCTK_MemTicketRequest();

/* allocate data */

hi = (int*) CCTK_MALLOC(10*sizeof(int));

/* store current memstate, ticket: t2*/

t2 = CCTK_MemTicketRequest();

/* cash ticket t1, print mem difference */

printf("NOW1a: %+d \n",CCTK_MemTicketCash(t1));

/* allocte some more data */

wo = (CCTK_REAL*)CCTK_MALLOC(10*sizeof(CCTK_REAL));

/* cash ticket t1 and t2, print mem difference */

printf("NOW1b: %+d \n",CCTK_MemTicketCash(t1));

printf("NOW2 : %+d \n",CCTK_MemTicketCash(t2));

/* delete the tickets from the database */

CCTK_MemTicketDelete(t1);

CCTK_MemTicketDelete(t2);

C1.9.4 Calls between Different Programming Languages

Calling C Routines from Fortran

To make the following C routine,

int <routine name>(<argument list>)

...

also callable from Fortran, a new routine must be added, which is declared using the CCTK FCALL and
CCTK FNAME macros:

void CCTK FCALL CCTK FNAME(<routine name>)(int *ierr, <argument list>)

<rewrite routine code, or call C routine itself>

The convention used in Cactus, is that <routine name> be the same as any C routine name, and that
this is mixed-case. The macros change the case and number of underscores of the routine name to match
that expected by Fortran.

All arguments passed by Fortran to the routine (except strings) are pointers in C, e.g. a call from Fortran

CCTK_INT arg1

C60 C60/C82

C1.9. ADVANCED THORN WRITING CHAPTER C1. APPLICATION THORNS

CCTK_REAL arg2

CCTK_REAL arg3(30,30,30)

...

call MyCRoutine(arg1,arg2,arg3)

should appear in C as

void CCTK_FCALL CCTK_FNAME(MyCRoutine)(CCTK_INT *arg1,

CCTK_REAL *arg2,

CCTK_REAL *arg3)

{

...

}

String Arguments from Fortran

Fortran passes string arguments in a special, compiler-dependent, way. To facilitate this, the CCTK pro-
vides a set of macros to enable the translation to C strings. The macros are defined in cctk FortranString.h,
which should be included in your C file.

String arguments must always come last in the argument list for these macros to be effective (some
Fortran compilers automatically migrate the strings to the end, so there is no portable workaround).

The macros to use depend upon the number of string arguments–we currently support up to three.
The macros are <ONE|TWO|THREE> FORTSTRING ARG. Corresponding to each of these are two macros
<ONE|TWO|THREE> FORTSTRING CREATE and <ONE|TWO|THREE> FORTSTRING PTR, which take one, two, or
three arguments depending on the number of strings. The latter set is only necessary if a string is to be
modified. In more detail:

<ONE|TWO|THREE> FORTSTRING ARG

Used in the argument list of the C routine to which the Fortran strings are passed.

<ONE|TWO|THREE> FORTSTRING CREATE

Used in the declaration section of the C routine to which the Fortran strings are
passed. These macros have one, two or three arguments which are the variable
names you choose to use for the strings in the C routine, created by null-terminating
the passed-in Fortran strings. The CREATE macros create new strings with the names
you provide, and thus should be treated as read-only and freed after use.

<ONE|TWO|THREE> FORTSTRING PTR

These macros, used in the declaration section of the C routine after the CREATE

macro, should be used if you need to modify one of the passed-in strings. They
declare and define pointers to the passed-in strings.

cctk strlen<1|2|3>

These integer variables, automatically defined by the CREATE macro, hold the
lengths of the passed in Fortran strings.

The use of the macros is probably best explained with examples. For read-only access to the strings, only
the first two macros are needed, the following example compares two strings passed in from Fortran.

C61 C61/C82

C1.9. ADVANCED THORN WRITING CHAPTER C1. APPLICATION THORNS

#include <stdlib.h>

#include <string.h>

#include <cctk_FortranString.h>

int CCTK_FCALL CCTK_FNAME(CompareStrings)(TWO_FORTSTRING_ARG)

{

int retval;

/* Allocate and create C strings with \0 at end. */

/* This makes variable declarations, so it must be before

any executable statements.*/

TWO_FORTSTRING_CREATE(arg1,arg2)

/* Do some work with the strings */

retval = strcmp(arg1,arg2);

/* Important, these must be freed after use */

free(arg1);

free(arg2);

return retval;

}

Since the null terminated strings may be copies of the strings passed from Fortran, they should be treated
as read-only.

To change the data in a string passed from Fortran, you need to use the FORTSTRING PTR macros, which
declare and set up pointers to the strings passed from C. Note that this macro must be used after the
FORTSTRING CREATE macro. For example, the following routine copies the contents of the second string
to the first string

#include <stdlib.h>

#include <string.h>

#include <cctk_FortranString.h>

int CCTK_FCALL CCTK_FNAME(CopyStrings)(TWO_FORTSTRING_ARG)

{

int retval;

/* Allocate and create C strings with \0 at end. */

/* This makes variable declarations, so it must be before

any executable statements. */

TWO_FORTSTRING_CREATE(arg1,arg2)

TWO_FORTSTRING_PTR(farg1,farg2)

/* Do some work with the strings */

retval = strncpy(farg1,arg2,cctk_strlen1);

C62 C62/C82

C1.9. ADVANCED THORN WRITING CHAPTER C1. APPLICATION THORNS

/* Important, these must be freed after use */

free(arg1);

free(arg2);

return retval;

}

Note that in the example above, two new variables, pointers to the Fortran strings, were created. These
are just pointers and should not be freed. The example also illustrates the automatically-created variables,
e.g. cctk strlen1, which hold the sizes of original Fortran strings. When writing to a string its length
should never be exceeded.

Calling Fortran Routines from C

To call a utility Fortran routine from C, use

void CCTK_FCALL CCTK_FNAME(<Fortran routine name>)(<argument list>)

Note that Fortran expects all arguments (apart from strings) to be pointers, so any non-array data should
be passed by address.

Currently, we have no support for calling Fortran routines which expect strings from C. However, passing
routines is supported when you use function aliasing, see Section C1.9.5.

C1.9.5 Function aliasing

Like calling functions in a different language, Cactus offers a mechanism for calling a function in a different
thorn where you don ’t need to know which thorn is actually providing the function, nor what language
the function is provided in. The idea of function aliasing is similar to that of thorns; the routine that
calls a function should not need to know anything about it, except that the function exists.

Function aliasing is quite restrictive, because of the problems involved in inter-language calling, as seen
in the previous section. Function aliasing is also comparatively inefficient, and should not be used in a
part of your code where efficiency is important.

Function aliasing is language-neutral, however, the syntax is strongly based on C. In the future, the
function aliasing declarations may go into a new functions.ccl file, and will have a format more similar
to that of variable group and parameter declarations.

Using an Aliased Function

To use an aliased function you must first declare it in your interface.ccl file. Declare the prototype
as, for example,

CCTK_REAL FUNCTION SumStuff(CCTK_REAL IN x, CCTK_REAL IN y)

C63 C63/C82

C1.9. ADVANCED THORN WRITING CHAPTER C1. APPLICATION THORNS

and that this function will be either required in your thorn by

REQUIRES FUNCTION SumStuff

or optionally used in your thorn by

USES FUNCTION SumStuff

A prototype of this function will be available to any C routine that includes the cctk.h header file. In
a Fortran file, the declaration of the function will be included in the DECLARE CCTK FUNCTIONS macro,
which is available after the statement #include "cctk Functions.h". The keywords IN, OUT, and INOUT

work in the same fashion as INTENT statements in Fortran 90. That is, the C prototype will expect an
argument with intent IN to be a value and one with intent OUT or INOUT to be a pointer. There also
exists the ARRAY keyword for passing arrays of any dimension. Functions which are required by some
thorn (which doesn’t provide it itself) are checked at startup to be provided by some other thorn.

Providing a Function

To provide an aliased function you must again add the prototype to your interface.ccl file. A statement
containing the name of the providing function and the language it is provided in, must also be given. For
example,

CCTK_REAL FUNCTION SumStuff(CCTK_REAL IN x, CCTK_REAL IN y)

PROVIDES FUNCTION SumStuff WITH AddItUp LANGUAGE C

The appropriate function must then be provided somewhere in this thorn. Multiple thorns providing the
same function can be compiled into the same configuration; however, only one providing thorn may be
activated at runtime, otherwise, an error message is printed and the run is aborted.

It is necessary to specify the language of the providing function; no default will be assumed.

Conventions and Restrictions

Various restrictions are necessary to make function aliasing work. These are

• The return type of any function must be either void or one of the Cactus data types CCTK INT or
CCTK REAL. Standard types such as int are not allowed.

• The type of an argument must be one of scalar types CCTK INT, CCTK REAL, CCTK COMPLEX,

CCTK STRING, CCTK POINTER, CCTK FPOINTER, or an array or pointer type CCTK INT ARRAY, CCTK REAL

ARRAY, CCTK COMPLEX ARRAY, CCTK POINTER ARRAY.5 The scalar types are assumed to be not
modifiable. Any changes made to a scalar argument by a providing function may be silently lost,
or may not; it is dependent on the language of the providing and calling function. If you wish to
modify an argument, then it must have intent OUT or INOUT (and hence must be either a CCTK INT,
a CCTK REAL, or a CCTK COMPLEX, or an array of one of these types).

5Unfortunately, neither CCTK FPOINTER ARRAY, nor CCTK STRING ARRAY will work.

C64 C64/C82

C1.9. ADVANCED THORN WRITING CHAPTER C1. APPLICATION THORNS

• The name of both, the aliased and providing function, are restricted. They must follow the standard
C semantics (start with a letter, contain only letters, numbers or underscores). Additionally, they
must be mixed case (that is, contain at least one uppercase and one lowercase letter). The names
of the aliased and providing functions must be distinct.

• If an argument is a function pointer, then the syntax looks like

CCTK_REAL Integrate(CCTK_REAL CCTK_FPOINTER func(CCTK_REAL IN x), \

CCTK_REAL IN xmin, CCTK_REAL IN xmax)

It is assumed that the function pointer argument has the same language as the calling function.
Function pointer arguments may not be nested.

• CCTK STRING arguments follow the same conventions as in the previous section. That is, they
must appear at the end of the argument list, there must be at most three, and a function with a
CCTK STRING argument can only be provided in C, not Fortran, although they may be called from
either.

Examples

• A C function is provided to add together two real numbers. The interface.ccl should read

CCTK_REAL FUNCTION SumStuff(CCTK_REAL IN x, CCTK_REAL IN y)

PROVIDES FUNCTION SumStuff WITH AddItUp LANGUAGE C

USES FUNCTION SumStuff

• A Fortran function is provided to invert a real number. The interface.ccl should read

SUBROUTINE Invert(CCTK_REAL INOUT x)

PROVIDES FUNCTION Invert WITH FindInverse LANGUAGE Fortran

USES FUNCTION Invert

Note that SUBROUTINE has the same meaning as void FUNCTION.

• A Fortran function is provided to integrate any function over an interval. The interface.ccl

should read

CCTK_REAL Integrate(CCTK_REAL CCTK_FPOINTER func(CCTK_REAL IN x), \

CCTK_REAL IN xmin, CCTK_REAL IN xmax)

PROVIDES FUNCTION Integrate WITH SimpsonsRule LANGUAGE Fortran

USES FUNCTION Integrate

Testing Aliased Functions

The calling thorn does not know if an aliased function is even provided by another thorn. Calling an
aliased function that has not been provided, will lead to a level 0 warning message, stopping the code. In
order to check if a function has been provided by some thorn, use the CCTK IsFunctionAliased function
described in the function reference section.

C65 C65/C82

C1.9. ADVANCED THORN WRITING CHAPTER C1. APPLICATION THORNS

C1.9.6 Naming Conventions

• Thorn names must not start with the word “Cactus” (in any case).

• Arrangements will be ignored if their names start with a hash mark ‘#’ or dot ‘.’, or end with a
tilde ‘~’, .bak or .BAK.

• Thorns will be ignored if they are called doc or start with a hash mark ‘#’ or dot ‘.’, or end with
a tilde ‘~’, .bak or .BAK.

• Routine names have to be unique among all thorns.

C1.9.7 General Naming Conventions

The following naming conventions are followed by the flesh and the supported Cactus arrangements.
They are not compulsory, but if followed, will allow for a homogeneous code.

• Parameters: lower case (except for acronyms) with words separated by an underscore. Examples:
my first parameter, solve PDE equation.

• Filenames and routine names: Prefixed by thorn name with an underscore, then capitalised words,
with no spaces. Examples: MyThorn StartUpRoutine, BestSolver InitialDataForPDE.

C1.9.8 Data Types and Sizes

Cactus knows about the following fixed size data types:

Data Type Size (bytes) Variable Type Fortran Equivalent
CCTK BYTE 1 CCTK VARIABLE BYTE integer*1

CCTK INT1 1 CCTK VARIABLE INT1 integer*1

CCTK INT2 2 CCTK VARIABLE INT2 integer*2

CCTK INT4 4 CCTK VARIABLE INT4 integer*4

CCTK INT8 8 CCTK VARIABLE INT8 integer*8

CCTK REAL4 4 CCTK VARIABLE REAL4 real*4

CCTK REAL8 8 CCTK VARIABLE REAL8 real*8

CCTK REAL16 16 CCTK VARIABLE REAL16 real*16

CCTK COMPLEX8 8 CCTK VARIABLE COMPLEX8 complex*8

CCTK COMPLEX16 16 CCTK VARIABLE COMPLEX16 complex*16

CCTK COMPLEX32 32 CCTK VARIABLE COMPLEX32 complex*32

The availability of these types, and the corresponding C data types, are platform-dependent. For each
fixed-size data type, there exists a corresponding preprocessor macro HAVE <data type>, which should
be used to check whether the given CCTK data type is supported, e.g.

/* declare variable with extended-precision complex data type if available,

otherwise, with default CCTK precision */

#ifdef HAVE_CCTK_COMPLEX32

CCTK_COMPLEX32 var;

C66 C66/C82

C1.9. ADVANCED THORN WRITING CHAPTER C1. APPLICATION THORNS

#else

CCTK_COMPLEX var;

#endif

In addition, Cactus provides three generic numeric data types which map onto the compilers’ native data
types used to represent integer, real, and complex values. The size for these generic types can be chosen at
configuration time (see Section B2.1.1). This is to allow the code to be run easily at different precisions.
Note that the effectiveness of running the code, at a lower or higher precision, depends crucially on all
thorns being used making consistent use of the these generic data types:

Data Type Variable Type Configuration Option
CCTK INT CCTK VARIABLE INT INTEGER PRECISION

CCTK REAL CCTK VARIABLE REAL REAL PRECISION

CCTK COMPLEX CCTK VARIABLE COMPLEX Same as real precision

These variable types must be used by thorn writers to declare variables in the thorn interface files, and
may be used to declare variables in the thorn routines. Note that variable declarations in thorns should
obviously match the definitions in the interface files where appropriate.

A set of macros, which are interpreted by the preprocessor at compile time, to signify which data size is
being used, are also provided:

Data Type #define

CCTK INT1 CCTK INT PRECISION 1

CCTK INT2 CCTK INT PRECISION 2

CCTK INT4 CCTK INT PRECISION 4

CCTK INT8 CCTK INT PRECISION 8

CCTK REAL4 CCTK REAL PRECISION 4

CCTK REAL8 CCTK REAL PRECISION 8

CCTK REAL16 CCTK REAL PRECISION 16

CCTK COMPLEX8 CCTK COMPLEX PRECISION 8

CCTK COMPLEX16 CCTK COMPLEX PRECISION 16

CCTK COMPLEX32 CCTK COMPLEX PRECISION 32

Cactus also provides generic data and function pointers, which can be used from either C or Fortran:

Data Type Variable Type C equivalent
CCTK POINTER CCTK VARIABLE POINTER void *data ptr

CCTK POINTER TO CONST CCTK VARIABLE POINTER TO CONST const void *data ptr

CCTK FPOINTER CCTK VARIABLE FPOINTER void (*fn ptr)(void)

Fortran Thorn Writers

Cactus provides the data types CCTK POINTER and CCTK POINTER TO CONST for use in Fortran code to
declare a pointer passed from C. For example, the variable cctkGH is of the type CCTK POINTER. The data
type CCTK STRING is, in Fortran, also an opaque type; it corresponds to a C pointer, and one has to use
the function CCTK FortranString to convert it to a Fortran string, or the CCTK Equals to compare it to
a Fortran String.

C67 C67/C82

C1.9. ADVANCED THORN WRITING CHAPTER C1. APPLICATION THORNS

Since the data types, integer in Fortran and int in C, may be different6, many routines that can be
called from both, C and Fortran, take arguments of the type CCTK INT. This type can be different from the
type integer. Fortran does not convert routine arguments automatically, and it is, therefore, necessary
to pay attention to the exact argument types that a routine expects, and to convert between integer

and CCTK INT, accordingly. Currently, most flesh functions take integer arguments, while all aliased
functions take CCTK INT arguments.

NOTE: If you make errors in passing Fortran arguments, and if there are no interfaces (“proto-
types”) available for the routines that are called, then the compiler cannot detect these errors.
Be careful, when you write Fortran code yourself, consider placing routines in modules, which
implicitly define interfaces for all contained routines.

There are two convenient ways to convert between these types. An easy way, is to define parameters or
to declare variables of the desired type, assign a value to these parameters or variables, and then pass
the parameter or value. This makes for very readable code, since the name of the parameter or variable
serves as additional documentation:

CCTK_INT, parameter : jtwo = 2

integer :: vindex_gxx, vindex_kxx

CCTK_INT :: syncvars(jtwo)

call CCTK_VarIndex (vindex_gxx, "ADMBase::gxx")

call CCTK_VarIndex (vindex_kxx, "ADMBase::kxx")

syncvars(1) = vindex_gxx

syncvars(2) = vindex_kxx

call CCTK_SyncGroupsI (cctkGH, jtwo, syncvars)

(You have probably seen the strange Fortran convention, where people introduce constants named zero

or two—it is a convenient way to make sure that the constant has the correct type.)

Another possibility are explicit type conversions. They can rather easily be added to existing code:

! Boilerplate code to determine type kinds

integer, parameter :: izero = 0 ! A dummy variable of type integer

CCTK_INT, parameter :: jzero = 0 ! A dummy variable of type CCTK_ITN

integer, parameter :: ik = kind (izero) ! The kind of "integer"

integer, parameter :: jk = kind (jzero) ! The kind of "CCTK_INT"

integer :: syncvars(2)

call CCTK_VarIndex (syncvars(1), "ADMBase::gxx")

call CCTK_VarIndex (syncvars(2), "ADMBase::kxx")

call CCTK_SyncGroupsI (cctkGH, int(2,jk), int(syncvars,jk))

Fortran distinguishes between different integer kinds. These kinds are what is different between integer

and CCTK INT. The expression int(EXPR,KIND) converts EXPR to an integer of kind KIND. Above, we use

6This is only a theoretical possibility, in practice, they have to be the same type for Cactus to work at all.

C68 C68/C82

C1.10. TELLING THE MAKE SYSTEM WHAT TO DO CHAPTER C1. APPLICATION THORNS

the convention that the prefix i denotes things having to do with integer, and the prefix j denotes
CCTK INT.

Note that we declare the array syncvars with the type that is necessary to set its values. Type conversions
are only possible if variables are read, not when they are written to.

C1.10 Telling the Make system What to Do

C1.10.1 Basic Recipe

C1.10.2 Make Concepts

C1.10.3 The Four Files

C1.10.4 How your code is built

C69 C69/C82

Chapter C2

Infrastructure Thorns

• Concepts and terminology (Overloading and registration of functions)

• The cGH structure — what it is and how to use it

• Extending the cGH structure

• Querying group and variable information

• Providing an I/O layer

• Providing a communication layer

• Providing a reduction operator

• Providing an interpolation operator

• Overloadable functions

C2.1 Concepts and Terminology

C2.1.1 Overloading and Registration

The flesh defines a core API which guarantees the presence of a set of functions. Although the flesh
guarantees the presence of these functions, they can be provided by thorns. Thorns do this by either the
overloading or the registration of functions.

Overloading

Some functions can only be provided by one thorn. The first thorn to overload this function succeeds,
and any later attempt to overload the function fails. For each overloadable function, there is a function
with a name something like CCTK Overload... which is passed the function pointer.

C70 C70/C82

C2.2. GH EXTENSIONS CHAPTER C2. INFRASTRUCTURE THORNS

Registration

Some functions may be provided by several thorns. The thorns register their function with the flesh, and
when the flesh-provided function is called, the flesh calls all the registered functions.

C2.1.2 GH Extensions

A GH extension is a way to associate data with each cGH. This data should be data that is required to
be associated with a particular GH by a thorn.

Each GH extension is given a unique handle.

C2.1.3 I/O Methods

An I/O method is a distinct way to output data. Each I/O method has a unique name, and the flesh-
provided I/O functions operate on all registered I/O methods.

C2.2 GH Extensions

A GH extension is created by calling CCTK RegisterGHExtension, with the name of the extension. This
returns a unique handle that identifies the extension. (This handle can be retrieved at any time by a call
to CCTK GHExtensionHandle.)

Associated with a GH extension are three functions

SetupGH this is used to actually create the data structure holding the extension. It is called
when a new cGH is created.

InitGH this is used to initialise the extension. It is called after the scheduler has been
initialised on the cGH.

ScheduleTraverseGH

this is called whenever the schedule tree is due to be traversed on the GH. It should
initialise the data on the cGH and the call CCTK ScheduleTraverse to traverse the
schedule tree.

C2.3 Overloadable and Registerable Functions in Main

Function Default
CCTK Initialise

CCTK Evolve

CCTK Shutdown

C71 C71/C82

C2.4. OVERLOADABLE AND REGISTERABLE FUNCTIONS IN COMMCHAPTER C2. INFRASTRUCTURE THORNS

C2.4 Overloadable and Registerable Functions in Comm

Function Default
CCTK SyncGroup

CCTK SyncGroupsByDirI

CCTK EnableGroupStorage

CCTK DisableGroupStorage

CCTK EnableGroupComm

CCTK DisableGroupComm

CCTK Barrier

CCTK Reduce

CCTK Interp

CCTK ParallelInit

C2.5 Overloadable and Registerable Functions in I/O

Function Default
CCTK OutputGH

CCTK OutputVarAsByMethod

C2.6 Drivers

The flesh does not know about memory allocation for grid variables, about how to communicate data
when synchronisation is called for, or about multiple patches or adaptive mesh refinement. All this is the
job of a driver.

This chapter describes how to add a driver to your code.

C2.6.1 Anatomy

A driver consists of a Startup routine which creates a GH extension, registers its associated functions,
and overloads the communication functions. It may optionally register interpolation, reduction, and I/O
methods.

A driver may also overload the default Initialisation and Evolution routines, although a simple unigrid
evolver is supplied in the flesh.

C2.6.2 Startup

A driver consists of a GH extension, and the following overloaded functions.

1. CCTK EnableGroupStorage

2. CCTK DisableGroupStorage

C72 C72/C82

C2.6. DRIVERS CHAPTER C2. INFRASTRUCTURE THORNS

3. CCTK ArrayGroupSizeB

4. CCTK QueryGroupStorageB

5. CCTK SyncGroup

6. CCTK SyncGroupsByDirI

7. CCTK EnableGroupComm

8. CCTK DisableGroupComm

9. CCTK Barrier

10. CCTK OverloadParallelInit

11. CCTK OverloadExit

12. CCTK OverloadAbort

13. CCTK OverloadMyProc

14. CCTK OverloadnProcs

The overloadable function CCTK SyncGroup is deprecated, a driver should instead provide a routine to
overload the more general function CCTK SyncGroupsByDirI.

C2.6.3 The GH Extension

The GH extension is where the driver stores all its grid-dependent information. This is stuff like any data
associated with a grid variable (e.g. storage and communication state), how many grids if it is AMR, ...
It is very difficult to describe in general, but one simple example might be

struct SimpleExtension

{

/* The data associated with each variable */

/* data[var][timelevel][ijk] */

void ***data

} ;

with a SetupGH routine like

struct SimpleExtension *SimpleSetupGH(tFleshConfig *config, int conv_level, cGH *GH)

{

struct SimpleExtension *extension;

extension = NULL;

if(conv_level < max_conv_level)

C73 C73/C82

C2.6. DRIVERS CHAPTER C2. INFRASTRUCTURE THORNS

{

/* Create the extension */

extension = malloc(sizeof(struct SimpleExtension));

/* Allocate data for all the variables */

extension->data = malloc(num_vars*sizeof(void**));

for(var = 0 ; var < num_vars; var++)

{

/* Allocate the memory for the time levels */

extension->data[var] = malloc(num_var_time_levels*sizeof(void *));

for(time_level = 0; time_level < num_var_time_level; time_level++)

{

/* Initialise the data to NULL */

extension->data[var][time_level] = NULL;

}

}

}

return extension;

}

Basically, what this example is doing is preparing a data array for use. The function can query the flesh
for information on every variable. Note that scalars should always have memory actually assigned to
them.

An InitGH function isn’t strictly necessary, and in this case, it could just be a dummy function.

The ScheduleTraverseGH function needs to fill out the cGH data, and then call CCTK ScheduleTraverse

to have the functions scheduled at that point executed on the grid

int SimpleScheduleTraverseGH(cGH *GH, const char *where)

{

int retcode;

int var;

int gtype;

int ntimelevels;

int level;

int idir;

extension = (struct SimpleExtension *)GH->extensions[SimpleExtension];

for (idir=0;idir<GH->cctk_dim;idir++)

{

GH->cctk_levfac[idir] = 1;

GH->cctk_nghostzones[idir] = extension->nghostzones[idir];

GH->cctk_lsh[idir] = extension->lnsize[idir];

GH->cctk_gsh[idir] = extension->nsize[idir];

C74 C74/C82

C2.6. DRIVERS CHAPTER C2. INFRASTRUCTURE THORNS

GH->cctk_bbox[2*idir] = extension->lb[extension->myproc][idir] == 0;

GH->cctk_bbox[2*idir+1] = extension->ub[extension->myproc][idir]

== extension->nsize[idir]-1;

GH->cctk_lbnd[idir] = extension->lb[extension->myproc][idir];

GH->cctk_ubnd[idir] = extension->ub[extension->myproc][idir];

}

for(var = 0; var < extension->nvariables; var++)

{

gtype = CCTK_GroupTypeFromVarI(var);

ntimelevels = CCTK_MaxTimeLevelsVI(var);

for(level = 0; level < ntimelevels; level++)

{

switch(gtype)

{

case CCTK_SCALAR :

GH->data[var][level] = extension->variables[var][level];

break;

case CCTK_GF :

GH->data[var][level] =

((pGF ***)(extension->variables))[var][level]->data;

break;

case CCTK_ARRAY :

GH->data[var][level] =

((pGA ***)(extension->variables))[var][level]->data;

break;

default:

CCTK_WARN(CCTK_WARN_ALERT,"Unknown group type in SimpleScheduleTraverse");

}

}

}

retcode = CCTK_ScheduleTraverse(where, GH, NULL);

return retcode;

}

The third argument to CCTK ScheduleTraverse is actually a function which will be called by the scheduler
when it wants to call a function scheduled by a thorn. This function is given some information about the
function to call, and is an alternative place where the cGH can be setup.

This function is optional, but a simple implementation might be

int SimpleCallFunction(void *function,

cFunctionData *fdata,

void *data)

C75 C75/C82

C2.6. DRIVERS CHAPTER C2. INFRASTRUCTURE THORNS

{

void (*standardfunc)(void *);

int (*noargsfunc)(void);

switch(fdata->type)

{

case FunctionNoArgs:

noargsfunc = (int (*)(void))function;

noargsfunc();

break;

case FunctionStandard:

switch(fdata->language)

{

case LangC:

standardfunc = (void (*)(void *))function;

standardfunc(data);

break;

case LangFortran:

fdata->FortranCaller(data, function);

break;

default :

CCTK_WARN(CCTK_WARN_ALERT, "Unknown language.");

}

break;

default :

CCTK_WARN(CCTK_WARN_ALERT, "Unknown function type.");

}

/* Return 0, meaning didn’t synchronise */

return 0;

}

The return code of the function signifies whether or not the function synchronised the groups in this
functions synchronisation list of not.

The flesh will synchronise them if the function returns false.

Providing this function is probably the easiest way to do multi-patch or AMR drivers.

C2.6.4 Memory Functions

These consist of

1. CCTK EnableGroupStorage

2. CCTK DisableGroupStorage

3. CCTK QueryGroupStorageB

4. CCTK ArrayGroupSizeB

C76 C76/C82

C2.7. I/O METHODS CHAPTER C2. INFRASTRUCTURE THORNS

En/Disable Group Storage

These are responsible for switching the memory for all variables in a group on or off. They should return
the former state, e.g. if the group already has storage assigned, they should return 1.

In our simple example above, the enabling routine would look something like

int SimpleEnableGroupStorage(cGH *GH, const char *groupname)

{

extension = (struct SimpleExtension *)GH->extensions[SimpleExtension];

if(extension->data[first][0][0] == NULL)

{

for(var = first; var <= last; var++)

{

allocate memory for all time levels;

}

retcode = 0;

}

else

{

retcode = 1;

}

return retcode;

}

The disable function is basically the reverse of the enable one.

The QueryGroupStorage function basically returns true or false if there is storage for the group, and the
ArrayGroupSize returns the size of the grid function or array group in a particular direction.

En/Disable Group Comm

These are the communication analogues to the storage functions. Basically, they flag that communication
is to be done on that group or not, and may initialise data structures for the communication.

C2.7 I/O Methods

The flesh by itself does not provide output for grid variables or other data. Instead, it provides a
mechanism for thorns to register their own routines as I/O methods, and to invoke these I/O methods
by either the flesh scheduler or by other thorn routines.

This chapter explains how to implement your own I/O methods and register them with the flesh.

C77 C77/C82

C2.7. I/O METHODS CHAPTER C2. INFRASTRUCTURE THORNS

C2.7.1 I/O Method Registration

All I/O methods have to be registered with the flesh before they can be used.

The flesh I/O registration API provides a routine CCTK RegisterIOMethod() to create a handle for a new
I/O method which is identified by its name (this name must be unique for all I/O methods). With such
a handle, a thorn can then register a set of functions (using the CCTK RegisterIOMethod*() routines
from the flesh) for doing periodic, triggered, and/or unconditional output.

The following example shows how a thorn would register an I/O method, SimpleIO, with routines to
provide all these different types of output.

void SimpleIO_Startup (void)

{

int handle = CCTK_RegisterIOMethod ("SimpleIO");

if (handle >= 0)

{

CCTK_RegisterIOMethodOutputGH (handle, SimpleIO_OutputGH);

CCTK_RegisterIOMethodTimeToOutput (handle, SimpleIO_TimeToOutput);

CCTK_RegisterIOMethodTriggerOutput (handle, SimpleIO_TriggerOutput);

CCTK_RegisterIOMethodOutputVarAs (handle, SimpleIO_OutputVarAs);

}

}

C2.7.2 Periodic Output of Grid Variables

The flesh scheduler will automatically call CCTK OutputGH() at every iteration after the CCTK ANALYSIS

time bin. This function loops over all I/O methods and calls their routines registered as OutputGH() (see
also Section C1.2.3).

int SimpleIO_OutputGH (const cGH *GH);

The OutputGH() routine itself should loop over all variables living on the GH grid hierarchy, and do all
necessary output if requested (this is usually determined by I/O parameter settings).

As its return code, it should pass back the number of variables which were output at the current iteration,
or zero if no output was done by this I/O method.

C2.7.3 Triggered Output of Grid Variables

Besides the periodic output at every so many iterations using OutputGH(), analysis and output of grid
variables can also be done via triggers. For this, a TimeToOutput() routine is registered with an I/O
method. This routine will be called by the flesh scheduler at every iteration before CCTK ANALYSIS with
the triggering variable(s) as defined in the schedule block for all CCTK ANALYSIS routines (see Section
C1.5.4).

C78 C78/C82

C2.8. CHECKPOINTING/RECOVERY METHODSCHAPTER C2. INFRASTRUCTURE THORNS

If the TimeToOutput() routine decides that it is now time to do output, the flesh scheduler will in-
voke the corresponding analysis routine and also request output of the triggering variable(s) using
TriggerOutput().

int SimpleIO_TimeToOutput (const cGH *GH, int varindex);

int SimpleIO_TriggerOutput (const cGH *GH, int varindex);

Both routines get passed the index of a possible triggering grid variable.

TimeToOutput() should return a non-zero value if analysis and output for varindex should take place
at the current iteration, and zero otherwise.

TriggerOutput() should return zero for successful output of variable varindex , and a negative value in
case of an error.

C2.7.4 Unconditional Output of Grid Variables

An I/O method’s OutputVarAs() routine is supposed to do output for a specific grid variable if ever
possible. It will be invoked by the flesh I/O API routines CCTK OutputVar*() for unconditional, non-
triggered output of grid variables (see also Section C1.7.3).

A function registered as an OutputVarAs() routine has the following prototype:

int SimpleIO_OutputVarAs (const cGH *GH, const char *varname, const char *alias);

The variable to output, varname , is given by its full name. The full name may have appended an optional
I/O options string enclosed in curly braces (with no space between the full name and the opening curly
brace). In addition to that, an alias string can be passed which then serves the purpose of constructing
a unique name for the output file.

The OutputVarAs() routine should return zero if output for varname was done successfully, or a negative
error code otherwise.

C2.8 Checkpointing/Recovery Methods

Like for I/O methods, checkpointing/recovery functionality must be implemented by thorns. The flesh
only provides specific time bins at which the scheduler will call thorns’ routines, in order to perform
checkpointing and/or recovery.

This chapter explains how to implement checkpointing and recovery methods in your thorn. For further
information, see the documentation for thorn CactusBase/IOUtil.

C2.8.1 Checkpointing Invocation

Thorns register their checkpointing routines at CCTK CPINITIAL and/or CCTK CHECKPOINT and/or CCTK TERMINATE.
These time bins are scheduled right after all initial data has been set up, after every evolution timestep,

C79 C79/C82

C2.8. CHECKPOINTING/RECOVERY METHODSCHAPTER C2. INFRASTRUCTURE THORNS

and after the last time step of a simulation, respectively. (See Section C1.2.3 for a description of all
timebins). Depending on parameter settings, the checkpoint routines decide whether to write an initial
data checkpoint, and when to write an evolution checkpoint.

Each checkpoint routine should save all information to persistent storage, which is necessary to restart
the simulation at a later time from exactly the same state. Such information would include

• the current settings of all parameters

• the contents of all grid variables which have global storage assigned and are not tagged with
checkpoint="no" (see also Section D2.2.4 on page D10 for a list of possible tags)
Note that grid variables should be synced before writing them to disk.

• other relevant information such as the current iteration number and physical time, the number of
processors, etc.

C2.8.2 Recovery Invocation

Recovering from a checkpoint is a two-phase operation for which the flesh provides distinct timebins for
recovery routines to be scheduled at:

CCTK RECOVER PARAMETERS

This time bin is executed before CCTK STARTUP, in which the parameter file is parsed.
From these parameter settings, the recovery routines should decide whether recov-
ery was requested, and if so, restore all parameters from the checkpoint file and
overwrite those which aren’t steerable.
The flesh loops over all registered recovery routines to find out whether recovery
was requested. Each recovery routine should, therefore, return a positive integer
value for successful parameter recovery (causing a shortcut of the loop over all reg-
istered recovery routines), zero for no recovery, or a negative value to flag an error.
If recovery was requested, but no routine could successfully recover parameters, the
flesh will abort the run with an error message. If no routine recovered any param-
eters, i.e. if all parameter recovery routines returned zero, then this indicates that
this run is not a recovery run.
If parameter recovery was performed successfully, the scheduler will set the recovered
flag which—in combination with the setting of the Cactus::recovery mode parameter—
decides whether any thorn routine scheduled for CCTK INITIAL and CCTK POSTINITIAL

will be called. The default is to not execute these initial time bins during recovery,
because the initial data will be set up from the checkpoint file during the following
CCTK RECOVER VARIABLES time bin.

CCTK RECOVER VARIABLES

Recovery routines scheduled for this time bin are responsible for restoring the con-
tents of all grid variables with storage assigned from the checkpoint.
Depending on the setting of Cactus::recovery mode, they should also decide how
to treat errors in recovering individual grid variables. Strict recovery (which is the
default) requires all variables to be restored successfully (and will stop the code if
not), whereas a relaxed mode could, e.g. allow for grid variables, which are not
found in the checkpoint file, to be gracefully ignored during recovery.

C80 C80/C82

C2.9. CLOCKS FOR TIMING CHAPTER C2. INFRASTRUCTURE THORNS

C2.9 Clocks for Timing

To add a Cactus clock, you need to write several functions to provide the timer functionality (see Section
C1.9.1), and then register these functions with the flesh as a named clock.

The function pointers are placed in function pointer fields of a cClockFuncs structure. The fields of this
structure are are:

create void *(*create)(int)

destroy void (*destroy)(int, void *)

start void (*start)(int, void *)

stop void (*stop)(int, void *)

reset void (*reset)(int, void *)

get void (*get)(int, void *, cTimerVal *)

set void (*set)(int, void *, cTimerVal *)

n vals int

The first int argument of the functions may be used in any way you see fit.

The n vals field holds the number of elements in the vals array field of the cTimerVal structure used
by your timer (usually 1).

The return value of the create function will be a pointer to a new structure representing your clock.

The second void* argument of all the other functions will be the pointer returned from the create

function.

The get and set functions should write to and read from (respectively) a structure pointed to by the
cTimerVal* argument:

typedef enum {val_none, val_int, val_long, val_double} cTimerValType;

typedef struct

{

cTimerValType type;

const char *heading;

const char *units;

union

{

int i;

long int l;

double d;

} val;

double seconds;

double resolution;

} cTimerVal;

C81 C81/C82

C2.9. CLOCKS FOR TIMING CHAPTER C2. INFRASTRUCTURE THORNS

The heading field is the name of the clock, the units field holds a string describing the type held in
the val field, and the seconds field is the time elapsed in seconds. The resolution field is the smallest
non-zero difference in values of two calls to the timer, in seconds. For example, it could reflect that the
clock saves the time value internally as an integer value representing milliseconds.

To name and register the clock with the flesh, call the function

CCTK_ClockRegister("my_clock_name", &clock_func).

C82 C82/C82

Part D

Appendices

Revision : 5108 D1/D37

Chapter D1

Glossary

alias function See function aliasing.

AMR Automatic Mesh Refinement

analysis

API Applications Programming Interface, the interface provided by some software com-
ponent to programmers who use the component. An API usually consists of sub-
routine/function calls, but may also include structure definitions and definition of
constant values. The Cactus Reference Manual documents most of the Cactus flesh
APIs.

arrangement A collection of thorns, stored in a subdirectory of the Cactus arrangements direc-
tory. See Section C1.1.2.

autoconf A GNU program which builds a configuration script which can be used to make a
Makefile.

boundary zone A boundary zone is a set of points at the edge of a grid, interpreted as the boundary
of the physical problem, and which contains boundary data, e.g. Dirichlet conditions
or von Neumann conditions. (See also symmetry zone, ghost zone.)

Cactus Distinctive and unusual plant, which is adapted to extremely arid and hot envi-
ronments, showing a wide range of anatomical and physiological features which
conserve water. Cacti stems have expanded into green succulent structures con-
taining the chlorophyll necessary for life and growth, while the leaves have become
the spines for which cacti are so well known.1

CCTK Cactus Computational Tool Kit (The Cactus flesh and computational thorns).

CCL The Cactus Configuration Language, this is the language that the thorn configura-
tion files are written in. See Section D2.

configuration The combination of a set of thorns, and all the Cactus configure options which af-
fect what binary will be produced when compiling Cactus. For example, the choice
of compilers (Cactus CC, CXX, CUCC, and F90 configure options) and the compiler

1http://en.wikipedia.org/wiki/Cactus

Revision : 5108 D2/D37

CHAPTER D1. GLOSSARY

optimization settings (OPTIMISE/OPTIMIZE and *_OPTIMISE_FLAGS configure op-
tions) are part of a configuration (these flags change what binary is produced), but
the Cactus VERBOSE and WARN configure options aren’t part of a configuration (they
don’t change what binary will be produced). See Section A1.2.1.

checkout Get a copy of source code from SVN. See Section A1.1.

checkpoint Save the entire state of a Cactus run to a file, so that the run can be restarted at
a later time. See Sections A3, C2.8.

computational grid A discrete finite set of spatial points in <n (typically, 1 ≤ n ≤ 3). Historically,
Cactus has required these points to be uniformly spaced (uniformly spaced grid),
but now, Cactus supports non-uniform spacings (non-uniformly spaced grid), and
mesh refinement.

The grid consists of the physical domain and the boundary and symmetry points.

See grid functions for the typical use of grid points.

convergence Important, but often neglected.

CST The Cactus Specification Tool, which is the set of Perl scripts which parse the
thorns’ .ccl files, and generates the code that binds the thorn source files with the
flesh.

SVN Subversion is the favoured code distribution system for Cactus. See Sections A1.1,D7.

domain decomposition
The technique of breaking up a large computational problem into parts that are
easier to solve. In Cactus, it refers especially to a decomposition wherein the parts
are solved in parallel on separate computer processors.

driver A special kind of thorn which creates and handles grid hierarchies and grid vari-
ables. Drivers are responsible for memory management for grid variables, and for all
parallel operations, in response to requests from the scheduler. See Section C1.6.3.

evolution An iteration interpreted as a step through time. Also, a particular Cactus schedule
bin for executing routines when evolution occurs.

flesh The Cactus routines which hold the thorns together, allowing them to communicate
and scheduling things to happen with them. This is what you get if you check out
Cactus from our SVN repository.

friend Interfaces that are friends, share their collective set of protected grid variables. See
Section D2.2 C1.2.3.

function aliasing The process of referring to a function to be provided by an interface independently
of which thorn actually contains the function, or what language the function is
written in. The function is called an alias function. See Section C1.9.5, D2.2.3.

GA Shorthand for a grid array.

GF Shorthand for a grid function.

gmake GNU version of the make utility.

Revision : 5108 D3/D37

CHAPTER D1. GLOSSARY

ghost zone A set of points added for parallelisation purposes to a block of a grid lying on one
processor, corresponding to points on the boundary of an adjoining block of the grid
lying on another processor. Points from the boundary of the one block are copied
(via an inter-processor communication mechanism) during synchronisation to the
corresponding ghost zone of the other block, and vice versa. In single processor
runs there are no ghost zones. Contrast with symmetry or boundary zones. See
Section C1.3.5.

grid Short for computational grid.

grid array A grid variable whose global size need not be that of the computational grid; in-
stead, the size is declared explicitly in an interface.ccl file.

grid function A grid variable whose global size is the size of the computational grid. (See also
local array.) From another perspective, grid functions are functions (of any of
the Cactus data types (see Section C1.9.8) defined on the domain of grid points.
Typically, grid functions are used to discretely approximate functions defined on
the domain <n, with finite differencing used to approximate partial derivatives.

grid hierarchy A computational grid, and the grid variables associated with it.

grid point A spatial point in the computational grid.

grid scalar A grid variable with index zero, i.e. just a number on each processor.

grid variable A variable which is passed through the flesh interface, either between thorns or
between routines of the same thorn. This implies the variable is related to the
computational grid, as opposed to being an internal variable of the thorn or one
of its routines. grid scalar, grid function, and grid array are all examples of grid
variables. See Sections C1.3.2, D2.2.4

GNATS The GNU program we use for reporting and tracking bugs, comments and sugges-
tions.

GNU GNU’s Not Unix : a freely-distributable code project. See http://www.gnu.org/.

GV Shorthand for grid variable.

handle A signed integer value >= 0 passed by many Cactus routines and used to represent
a dynamic data or code object.

HDF5 Hierarchical Data Format version 5, an API, subroutine library, and file format for
storing structured data. An HDF5 file can store both data (for example, Cactus
grid variables), and meta data (data describing the other data, for example, Cactus
coordinate systems). See Section B2.2.2, also http://hdf.ncsa.uiuc.edu/HDF5/.

implementation Defines the interface that a thorn presents to the rest of a Cactus program. See
Section C1.1.3.

inherit A thorn that inherits from another implementation can access all the other imple-
mentation’s public variables. See Section D2.2, C1.2.3.

interface

interpolation Given a set of grid variables and interpolation points (points in the grid coordinate
space, which are typically distinct from the grid points), interpolation is the act of
producing values for the grid variables at each interpolation point over the entire
grid hierarchy. (Contrast with local interpolation.)

Revision : 5108 D4/D37

http://www.gnu.org/
http://hdf.ncsa.uiuc.edu/HDF5/

CHAPTER D1. GLOSSARY

local array An array that is declared in thorn code, but not declared in the thorn’s interface.ccl,
as opposed to a grid array.

local interpolation Given a set of grid variables and interpolation points (points in the grid coordinate
space ,which are typically distinct from the grid points), interpolation is the act of
producing values for the grid variables at each interpolation point on a particular
grid. (Contrast with interpolation.)

Makefile The default input file for make (or gmake). Includes rules for building targets.

make A system for building software. It uses rules involving dependencies of one part of
software on another, and information of what has changed since the last build, to
determine what parts need to be built.

MPI Message Passing Interface, an API and software library for sending messages be-
tween processors in a multiprocessor system. See Sections B2.1.1, B2.2.1.

multi-patch

mutual recursion See recursion, mutual.

NUL character The C programming language uses a “NUL character” to terminate character
strings. A NUL character has the integer value zero, but it’s useful to write it
as ’\0’, to emphasize to human readers that this has type char rather than int.

null pointer, NULL pointer
C defines a “null pointer”, often (slightly incorrectly) called a “NULL pointer”,
which is guaranteed not to point to any object. You get a null pointer by converting
the integer constant 0 to a pointer type, e.g. int* ptr = 0;.2

Many programmers prefer to use the predefined macro NULL (defined in <stdlib.h>,
<stdio.h>, and possibly other system header files) to create null pointers, e.g.
int* ptr = NULL;, to emphasize to human readers that this is a null pointer rather
than “just” the integer zero.

Note that it is explicitly not defined whether a null pointer is represented by a bit
pattern of all zero bits—this varies from system to system, and there are real-world
systems where null pointers are, in fact, not represented this way.

For further information, see the section “Null pointers” in the (excellent) comp.lang.c
FAQ, available online at http://www.eskimo.com/~scs/C-faq/top.html.

parallelisation The process of utilising multiple computer processors to work on different parts
of a computational problem at the same time, in order to obtain a solution of
the problem more quickly. Cactus achieves parallelisation by means of domain
decomposition.

parameter A variable that controls the run time behaviour of the Cactus executable. Param-
eters have default values which can be set in a parameter file. (See Chapter C1.4).
The flesh has parameters; thorn parameters are made available to the rest of Cactus
by describing them in the thorn’s param.ccl file (See Appendix D2.3).

parameter file (Also called par file.) A text file used as the input of a Cactus program, specifying
initial values of thorn parameters. See Section B3.2.

2Note that if you have an expression which has the value zero, but which isn’t an integer constant, converting this to a
pointer type is not guaranteed to give a NULL pointer, e.g.:
int i = 0;

int* ptr = i; /* ptr is NOT guaranteed to be a NULL pointer! */

Revision : 5108 D5/D37

http://www.eskimo.com/~scs/C-faq/top.html

CHAPTER D1. GLOSSARY

processor topology

PUGH The default driver thorn for Cactus which uses MPI. See Section B1.1.

PVM Parallel Virtual Machine, provides interprocessor communication. See Section B1.1.

recursion, mutual See mutual recursion.

reduction Given a set of grid variables on a computational grid, reduction is the process of
producing values for the variables on a proper subset of points from the grid.

scheduler The part of the Cactus flesh that determines the order and circumstances in which
to execute Cactus routines. Thorn functions and schedule groups are registered
with the flesh via the thorn’s schedule.ccl file to be executed in a certain sched-
ule bin, before or after another function or group executes, and so forth. See
section D2.4 C1.5,

schedule bin One of a set of special timebins pre-defined by Cactus. See Section D4 for a list.

schedule group A timebin defined by a thorn, in its schedule.ccl file (see Appendix D2.4). Each
schedule group must be defined to occur in a Cactus schedule bin or another sched-
ule group. See Chapter C1.5, C1.5.1.

shares An implementation may share restricted parameters with another implementation,
which means the other implementation can get the parameter values, and if the
parameters are steerable, it can change them. See Section D2.3 C1.2.3.

steerable parameter A parameter which can be changed at any time after the program has been ini-
tialised. See Section C1.4.3.

symmetry operation A grid operation that is a manifestation of a geometrical symmetry, especially
rotation or reflection.

symmetry zone A set of points laying at the edge of the computational grid and containing data ob-
tained by some symmetry operation from another part of the same grid. (Contrast
with boundary zone, ghost zone.)

synchronisation The process of copying information from the outer part of a computational interior
on one processor to the corresponding ghost zone (see) on another processor. Also
refers to a special Cactus timebin corresponding to the occurrence of this process.
See Section C1.3.5.

TAGS See Section D8.

target A make target is the name of a set of rules for make (or gmake). When the target
is included in the command line for make, the rules are executed, usually to build
some software.

test suite See Sections B2.6, C1.8.5.

thorn A collection of subroutines defining a Cactus interface. See Chapters C1.1, C1.2.

ThornList A file used by the Cactus CST to determine which thorns to compile into a Cactus
executable (see Section B2.4.1, B2.4.2). Can also be used to determine which
thorns to check out from SVN. (see Section A1.1). A ThornList for each Cactus
configuration lies in the configuration subdirectory of the Cactus configs directory.

time bin A time interval in the duration of a Cactus run wherein the flesh runs specified
routines. See scheduler, schedule bin.

Revision : 5108 D6/D37

CHAPTER D1. GLOSSARY

time level

timer A Cactus API for reporting time. See Section C1.9.1.

trigger

unigrid

WMPI Win32 Message Passing Interface. See Sections B2.1.1, B2.2.1.

wrapper

Revision : 5108 D7/D37

Chapter D2

Configuration File Syntax

D2.1 General Concepts

Each thorn is configured by three compulsory and one optional files in the top level thorn directory:

• interface.ccl

• param.ccl

• schedule.ccl

• configuration.ccl (optional)

These files are written in the Cactus Configuration Language which is case insensitive.

D2.2 interface.ccl

The interface configuration file consists of:

• A header block giving details of the thorn’s relationship with other thorns.

• A block detailing which include files are used from other thorns, and which include files are provided
by this thorn.

• Blocks detailing aliased functions provided or used by this thorn.

• A series of blocks listing the thorn’s global variables.

(For a more extensive discussion of Cactus variables, see Chapter C1.3.)

Revision : 5108 D8/D37

D2.2. INTERFACE.CCL CHAPTER D2. CONFIGURATION FILE SYNTAX

D2.2.1 Header Block

The header block has the form:

implements: <implementation>

inherits: <implementation>, <implementation>

friend: <implementation>, <implementation>

where

• The implementation name must be unique among all thorns, except between thorns which have the
same public and protected variables and global and restricted parameters.

• Inheriting from another implementation makes all that implementation’s public variables available
to your thorn. At least one thorn providing any inherited implementation must be present at
compile time. A thorn cannot inherit from itself. Inheritance is transitive (if A inherits from B,
and B inherits from C, then A also implicitly inherits from C), but not commutative.

• Being a friend of another implementation makes all that implementation’s protected variables avail-
able to your thorn. At least one thorn providing an implementation for each friend must be present
at compile time. A thorn cannot be its own friend. Friendship is associative, commutative and
transitive (i.e. if A is a friend of B, and B is a friend of C, then A is implicitly a friend of C).

D2.2.2 Include Files

The include file section has the form:

USES INCLUDE [SOURCE|HEADER]: <file_name>

INCLUDE[S] [SOURCE|HEADER]: <file_to_include> in <file_name>

The former is used when a thorn wishes to use an include file from another thorn. The latter indicates
that this thorn adds the code in <file to include> to the include file <file name>. If the include file
is described as SOURCE, the included code is only executed if the providing thorn is active. Both default
to HEADER.

D2.2.3 Function Aliasing

If any aliased function is to be used or provided by the thorn, then the prototype must be declared with
the form:

<return_type> FUNCTION <alias>(<arg1_type> <intent1> [ARRAY] <arg1>, ...)

The <return type> must be either void, CCTK_INT, CCTK_REAL, CCTK_COMPLEX, CCTK_POINTER, or
CCTK_POINTER_TO_CONST. The keyword SUBROUTINE is equivalent to void FUNCTION. The name of the
aliased function <alias> must contain at least one uppercase and one lowercase letter and follow the
C standard for function names. The type of each argument, <arg* type>, must be either CCTK_INT,

Revision : 5108 D9/D37

D2.2. INTERFACE.CCL CHAPTER D2. CONFIGURATION FILE SYNTAX

CCTK_REAL, CCTK_COMPLEX, CCTK_POINTER, CCTK_POINTER_TO_CONST, or STRING. All string arguments
must be the last arguments in the list. The intent of each argument, <intent*>, must be either IN,
OUT, or INOUT. An argument may only be modified if it is declared to have intent OUT or INOUT. If the
argument is an array then the prefix ARRAY must also be given.

If the argument <arg*> is a function pointer, then the argument itself (which will preceded by the return
type) should be

CCTK_FPOINTER <function_arg1>(<arg1_type> <intent1> <arg1>, ...)

Function pointers may not be nested.

If an aliased function is to be required, then the block

REQUIRES FUNCTION <alias>

is required.

If an aliased function is to be (optionally) used, then the block

USES FUNCTION <alias>

is required.

If a function is provided, then the block

PROVIDES FUNCTION <alias> WITH <provider> LANGUAGE <providing_language>

is required. As with the alias name, <provider> must contain at least one uppercase and one low-
ercase letter, and follow the C standard for function names. Currently, the only supported values of
<providing language> are C and Fortran.

D2.2.4 Variable Blocks

The thorn’s variables are collected into groups. This is not only for convenience, but for collecting like
variables together. Storage assignment, communication assignment, and ghostzone synchronization take
place for groups only.

The thorn’s variables are defined by:

[<access>:]

<data_type> <group_name>[[<number>]] [TYPE=<group_type>] [DIM=<dim>]

[TIMELEVELS=<num>]

[SIZE=<size in each direction>] [DISTRIB=<distribution_type>]

[GHOSTSIZE=<ghostsize>]

[TAGS=<string>] ["<group_description>"]

Revision : 5108 D10/D37

D2.2. INTERFACE.CCL CHAPTER D2. CONFIGURATION FILE SYNTAX

[{
[<variable_name>[,]<variable_name>

<variable_name>]

} ["<group_description>"]]

(The options TYPE, DIM, etc., following <group name> must all appear on one line.) Note that the
beginning brace ({) must sit on a line by itself; the ending brace (}) must be preceded by a carriage
return.

• access defines which thorns can use the following groups of variables. access can be either public,
protected or private.

• data type defines the data type of the variables in the group. Supported data types are CHAR,
BYTE, INT, REAL, and COMPLEX.

• group name must be an alphanumeric name (which may also contain underscores) which is unique
across group and variable names within the scope of the thorn. A group name is compulsory.

• [number], if present, indicates that this is a vector group. The number can be any valid arithmetical
expression consisting of integers or integer-valued parameters. Each variable in that group appears
as a one-dimensional array of grid variables. When the variable is accessed in the code, then the
last index is the member-index, and any other indices are the normal spatial indices for a group of
this type and dimension.

• TYPE designates the kind of variables held by the group. The choices are GF, ARRAY or SCALAR. This
field is optional, with the default variable type being SCALAR.

• DIM defines the spatial dimension of the ARRAY or GF. The default value is DIM=3.

• TIMELEVELS defines the number of timelevels a group has if the group is of type ARRAY or GF, and
can take any positive value. The default is one timelevel.

• SIZE defines the number grid-points an ARRAY has in each direction. This should be a comma-
separated list of valid arithmetical expressions consisting of integers or integer-valued parameters.

• DISTRIB defines the processor decomposition of an ARRAY. DISTRIB=DEFAULT distributes SIZE grid-
points across all processors. DISTRIB=CONSTANT implies that SIZE grid-points should be allocated
on each processor. The default value is DISTRIB=DEFAULT.

• GHOSTSIZE defines number of ghost zones in each dimension of an ARRAY. It defaults to zero.

• TAGS defines an optional string which is used to create a set of key-value pairs associated with
the group. The keys are case independent. The string (which must be deliminated by single or
double quotes) is interpreted by the function Util TableSetFromString(), which is described in
the Reference Manual.
Currently the CST parser and the flesh do not evaluate any information passed in an optional
TAGS string. Thorns may do so by querying the key/value table information for a group by using
CCTK GroupTagsTable() and the appropriate Util TableGet*() utility functions (see the Refer-
enceManual for detailed descriptions).
For a list of currently supported TAGS key-value table information, please refer to the corresponding
chapter in the documentation of the CactusDoc arrangement. (Section B2.5 on page B17 explains
how to build this documentation).

Revision : 5108 D11/D37

D2.3. PARAM.CCL CHAPTER D2. CONFIGURATION FILE SYNTAX

• The (optional) block following the group declaration line, contains a list of variables contained in the
group. All variables in a group have the same data type, variable type, dimension and distribution.
The list can be separated by spaces, commas, or new lines. The variable names must be unique
within the scope of the thorn. A variable can only be a member of one group. The block must be
delimited by brackets on new lines. If no block is given after a group declaration line, a variable
with the same name as the group is created. Apart from this case, a group name cannot be the
same as the name of any variable seen by this thorn.

• An optional description of the group can be given on the last line. If the variable block is omitted,
this description can be given at the end of the declaration line.

The process of sharing code among thorns using include files is discussed in Section C1.9.2.

D2.3 param.ccl

The parameter configuration file consists of a list of parameter object specification items (OSIs) giving the
type and range of the parameter separated by optional parameter data scoping items (DSIs), which detail
access to the parameter. (For a more extensive discussion of Cactus parameters, see Chapter C1.4.)

D2.3.1 Parameter Data Scoping Items

<access>:

The keyword access designates that all parameter object specification items, up to the next parameter
data scoping item, are in the same protection or scoping class. access can take the values:

global all thorns have access to global parameters

restricted other thorns can have access to these parameters, if they specifically request it in
their own param.ccl

private only your thorn has access to private parameters

shares in this case, an implementation name must follow the colon. It declares that all the
parameters in the following scoping block are restricted variables from the specified
implementation. (Note: only one implementation can be specified on this line.)

D2.3.2 Parameter Object Specification Items

[EXTENDS|USES] <parameter type> <parameter name>[[<len>]] "<parameter description>"

[AS <alias>] [STEERABLE=<NEVER|ALWAYS|RECOVER>]

[ACCUMULATOR=<expression>] [ACCUMULATOR-BASE=<parameter name>]

{
<parameter values>

} <default value>

Revision : 5108 D12/D37

D2.3. PARAM.CCL CHAPTER D2. CONFIGURATION FILE SYNTAX

where the options AS, STEERABLE, etc., following <parameter description>, must all appear in one
line. Note that the beginning brace ({) must sit on a line by itself; the ending brace (}) must be at the
beginning of a line followed by <default value> on that same line.

• The parameter values depend on the parameter type, which may be one of the following:

INT The specification of parameter values takes the form of one or more lines,
each of the form

<range description> [::"<comment describing this range>"]

Here, a <range description> specifies a set of integers, and has one of the
following forms:

* # means any integer

<integer> # means only <integer>

<lower bound>:<upper bound> # means all integers in the range

from <lower bound> to <upper bound>

<lower bound>:<upper bound>:<positive step>

means all integers in the range

from <lower bound> to <upper bound>

in steps of <positive step>

where <lower bound> has one of the forms

<empty field> # means no lower limit

* # means no lower limit

<integer> # means a closed interval starting at <integer>

[<integer> # also means a closed interval starting at <integer>

(<integer> # means an open interval starting at <integer>

and <upper bound> has one of the forms

<empty field> # means no upper limit

* # means no upper limit

<integer> # means a closed interval ending at <integer>

<integer>] # also means a closed interval ending at <integer>

<integer>) # means an open interval ending at <integer>

REAL The range specification is the same as with integers, except that here, no
step implies a continuum of values. Note that numeric constants should be
expressed as in C (e.g. 1e-10). Note also that one cannot use the Cactus types
such as CCTK REAL4 to specify the precision of the parameter; parameters
always have the default precision.

KEYWORD Each entry in the list of acceptable values for a keyword has the form

<keyword value>, <keyword value> :: "<description>"

Keyword values should be enclosed in double quotes. The double quotes are
mandatory if the keyword contains spaces.

Revision : 5108 D13/D37

D2.4. SCHEDULE.CCL CHAPTER D2. CONFIGURATION FILE SYNTAX

STRING Allowed values for strings should be specified using regular expressions. To
allow any string, the regular expression "" should be used. (An empty regular
expression matches anything.) Regular expressions and string values should
be enclosed in double quotes. The double quotes are mandatory if the regular
expression or the string value is empty or contains spaces.

BOOLEAN No parameter values should be specified for a boolean parameter. The
default value for a boolean can be

– True: 1, yes, y, t, true

– False: 0, no, n, f, false

Boolean values may optionally be enclosed in double quotes.

• The parameter name must be unique within the scope of the thorn.

• The default value must match one of the ranges given in the parameter type

• A thorn can declare that it EXTENDS a parameter of another thorn. This allows it to declare
additional acceptable values. By default, it is acceptable for two thorns to declare the same value
as acceptable.

• If the thorn wants to simply use a parameter from another thorn, without declaring additional
values, use USES instead.

• [len] (where len is an integer), if present, indicates that this is an array parameter of len values
of the specified type. (Note that the notation used above for the parameter specification breaks
down here, as there must be square brackets around the length).

• alias allows a parameter to appear under a different name in this thorn, other than its original
name in another thorn. The name, as seen in the parameter file, is unchanged.

• STEERABLE specifies when a parameter value may be changed. By default, parameters may not
be changed after the parameter file has been read, or on restarting from checkpoint. This option
relaxes this restriction, specifying that the parameter may be changed at recovery time from a
parameter file or at any time using the flesh routine CCTK ParameterSet—see the Reference Guide.

The value RECOVERY is used in checkpoint/recovery situations, and indicates that the parameter
may be altered until the value is read in from a recovery par file, but not after.

• ACCUMULATOR specifies that this is an accumulator parameter. Such parameters cannot be set
directly, but are set by other parameters who specify this one as an ACCUMULATOR-BASE. The ex-
pression is a two-parameter arithmetical expression of x and y. Setting the parameter consists of
evaluating this expression successively, with x being the current value of the parameter (at the first
iteration this is the default value), and y the value of the setting parameter. This procedure is
repeated, starting from the default value of the parameter, each time one of the setting parameters
changes.

• ACCUMULATOR-BASE specifies the name of an ACCUMULATOR parameter which this parameter sets.

D2.4 schedule.ccl

(A more extensive discussion of Cactus scheduling is provided in Chapter C1.5.) A schedule configuration
file consists of:

Revision : 5108 D14/D37

D2.4. SCHEDULE.CCL CHAPTER D2. CONFIGURATION FILE SYNTAX

• Assignment statements to switch on storage for grid variables for the entire duration of program
execution.

• Schedule blocks to schedule a subroutine from a thorn to be called at specific times during program
execution in a given manner.

• Conditional statements for both assignment statements and schedule blocks to allow them to be
processed depending on parameter values.

D2.4.1 Assignment Statements

Assignment statements, currently only assign storage.

These lines have the form:

[STORAGE: <group>[timelevels], <group>[timelevels]]

If the thorn is active, storage will be allocated, for the given groups, for the duration of program execution
(unless storage is explicitly switched off by some call to CCTK DisableGroupStorage within a thorn).

The storage line includes the number of timelevels to activate storage for, this number can be from 1
up to the maximum number or timelevels for the group, as specified in the defining interface.ccl file.
If the maximum number of timelevels is 1 (the default), this number may be omitted. Alternatively
timelevels can be the name of a parameter accessible to the thorn. The parameter name is the same as
used in C routines of the thorn, fully qualified parameter names of the form thorn::parameter are not
allowed. In this case 0 (zero) timelevels can be requested, which is equivalent to the STORAGE statement
being absent.

The behaviour of an assignment statement is independent of its position in the schedule file (so long as
it is outside a schedule block).

D2.4.2 Schedule Blocks

Each schedule block in the file schedule.ccl must have the syntax

schedule [GROUP] <function name|group name> AT|IN <time> \

[AS <alias>] \

[WHILE <variable>] [IF <variable>] \

[BEFORE|AFTER <function name>|(<function name> <function name> ...)] \

{
[LANG: <language>]

[OPTIONS: <option>,<option>...]

[TAGS: <keyword=value>,<keyword=value>...]

[STORAGE: <group>[timelevels],<group>[timelevels]...]

[READS: <group>,<group>...]

[WRITES: <group>,<group>...]

[TRIGGER: <group>,<group>...]

[SYNCHRONISE: <group>,<group>...]

[OPTIONS: <option>,<option>...]

} "Description of function"

Revision : 5108 D15/D37

D2.4. SCHEDULE.CCL CHAPTER D2. CONFIGURATION FILE SYNTAX

GROUP Schedule a schedule group with the same options as a schedule function. The
schedule group will be created if it doesn’t exist.

<function name|group name>

The name of a function or a schedule group to be scheduled. Function and schedule
group names are case sensitive.

<group> A group of grid variables. Variable groups inherited from other thorns may be used,
but they must then be fully qualified with the implementation name.

AT Functions can be scheduled to run at the Cactus schedule bins, for example, CCTK EVOL,
and CCTK STARTUP. A complete list and description of these is provided in Ap-
pendix D4. The initial letters CCTK are optional. Grid variables cannot be used in
the CCTK STARTUP and CCTK SHUTDOWN timebins.

IN Schedules a function or schedule group to run in a schedule group, rather than in
a Cactus timebin.

AS Provides an alias for a function or schedule group which should be used for schedul-
ing before, after or in. This can be used to provide thorn independence for other
thorns scheduling functions, or schedule groups relative to this one.

WHILE Executes a function or schedule group until the given variable (which must be a
fully qualified integer grid scalar) has the value zero.

IF Executes a function or schedule group only if the given variable (which must be a
fully qualified integer grid scalar) has a non-zero value.

BEFORE/AFTER Takes a function name, a function alias, a schedule group name, or a parentheses-
enclosed whitespace-separated list of these. (Any names that are not provided by
an active thorn are ignored.) Note that a single schedule block may have multiple
BEFORE/AFTER clauses. See Section C1.5 (“Scheduling”) in the Cactus Users’ Guide
for more information about BEFORE/AFTER clauses.

LANG The code language for the function (either C or FORTRAN). No language should be
specified for a schedule group.

OPTIONS Schedule options are used for mesh refinement and multi-block simulations, and
they determine “where” a routine executes. Possible options are:

meta

meta early

meta late

global

global early

global late

level

singlemap

local (default, may be omitted)

(Only one of these options may be used.) These options can be combined with the
following:

loop meta

Revision : 5108 D16/D37

D2.4. SCHEDULE.CCL CHAPTER D2. CONFIGURATION FILE SYNTAX

loop global

loop level

loop singlemap

loop local

(At most one of the loop ... options may be used.)

TAGS Schedule tags. These tags must have the form keyword=value, and must be in a
syntax accepted by Util TableCreateFromString.

STORAGE List of variable groups which should have storage switched on for the duration of
the function or schedule group. Each group must specify how many timelevels to
activate storage for, from 1 up to the maximum number for the group as specified in
the defining interface.ccl file. If the maximum is 1 (the default) this number may
be omitted. Alternatively timelevels can be the name of a parameter accessible
to the thorn. The parameter name is the same as used in C routines of the thorn,
fully qualified parameter names of the form thorn::parameter are not allowed. In
this case 0 (zero) timelevels can be requested, which is equivalent to the STORAGE

statement being absent.

READS READS is used to declare which grid variables are read by the routine. This informa-
tion is used e.g. to determine which variables need to be copied between host and
device for OpenCL or CUDA kernel. This information can also be used to ensure
that all variables that are read have previously been written by another routine.

WRITES WRITES is used to declare which grid variables are written by the routine. This
information is used e.g. to determine which variables need to be copied between
host and device for OpenCL or CUDA kernel. This information can also be used
to ensure that all variables that are read have previously been written by another
routine.

TRIGGER List of grid variables or groups to be used as triggers for causing an ANALYSIS

function or group to be executed. Any schedule block for an analysis function or
analysis group may contain a TRIGGER line.

SYNCHRONISE List of groups to be synchronised, as soon as the function or schedule group is
exited.

OPTIONS List of additional options (see below) for the scheduled function or group of func-
tions

Allowed Options

Cactus understands the following options. These options are interpreted by the driver, not by Cactus.
The current set of options is useful for Berger-Oliger mesh refinement which has subcycling in time, and
for multi-patch simulations in which the domain is split into several distinct patches. Given this, the
meanings of the options below is only tentative, and their exact meaning needs to be obtained from the
driver documentation. The standard driver PUGH ignores all options.

Option names are case-insensitive. There can be several options given at the same time.

Revision : 5108 D17/D37

D2.4. SCHEDULE.CCL CHAPTER D2. CONFIGURATION FILE SYNTAX

META This routine will only be called once, even if several simulations are performed at
the same time. This can be used, for example, to initialise external libraries, or to
set up data structures that live in global variables.

META-EARLY This option is identical to to META option with the exception that the routine will
be called together with the routines on the first subgrid.

META-LATE This option is identical to to META option with the exception that the routine will
be called together with the routines on the last subgrid.

GLOBAL This routine will only be called once on a grid hierarchy, not for all subgrids making
up the hierarchy. This can be used, for example, for analysis routines which use
global reduction or interpolation routines, rather than the local subgrid passed to
them, and hence should only be called once.

GLOBAL-EARLY This option is identical to to GLOBAL option with the exception that the routine
will be called together with the routines on the first subgrid.

GLOBAL-LATE This option is identical to to GLOBAL option with the exception that the routine
will be called together with the routines on the last subgrid.

LEVEL This routine will only be called once on any “level” of the grid hierarchy. That is, it
will only be called once for any set of sub-grids which have the same cctk levfac

numbers.

SINGLEMAP This routine will only be called once on any of the “patches” that form a “level” of
the grid hierarchy.

LOCAL (this is the default)
This routine will be called on every “component”.

When the above options are used, it is often the case that a certain routine should, e.g. be called at the
time for a GLOBAL routine, but should actually loop over all “components”. The following set of options
allows this:

LOOP-META Loop once.

LOOP-GLOBAL Loop over all simulations.

LOOP-LEVEL Loop over all “levels”.

LOOP-SINGLEMAP Loop over all “patches”.

LOOP-LOCAL Loop over all “components”.

For example, the specification

OPTIONS: global loop-local

schedules a routine at the time when a GLOBAL routine is scheduled, and then calls the routine in a loop
over all “components”.

Revision : 5108 D18/D37

D2.5. CONFIGURATION.CCL CHAPTER D2. CONFIGURATION FILE SYNTAX

D2.4.3 Conditional Statements

Any schedule block or assignment statements can be optionally surrounded by conditional if-elseif-else
constructs using the parameter data base. These can be nested, and have the general form:

if (<conditional-expression>)

{
[<assignments>]

[<schedule blocks>]

}

¡conditional-expression¿ can be any valid C construct evaluating to a truth value. Such conditionals
are evaluated only at program startup, and are used to pick between different static schedule options.
For dynamic scheduling, the SCHEDULE WHILE construction should be used.

Conditional constructs cannot be used inside a schedule block.

D2.5 configuration.ccl

[NOTE: The configuration.ccl is still relatively new, and not all features listed below may be fully
implemented or functional.]

A configuration.ccl file defines capabilities which a thorn either provides or requires, or may use if
available. Unlike implementations, only one thorn providing a particular capability may be compiled
into a configuration at one time. Thus, this mechanism may be used to, for example: provide access
to external libraries; provide access to functions which other thorns must call, but are too complex for
function aliasing; or to split a thorn into several thorns, all of which require some common (not aliased)
functions.

A configuration options file can contain any number of the following sections:

• PROVIDES <Capability>

{
SCRIPT <Configuration script>

LANG <Language>

[OPTIONS [<option>[,<option>]...]]

}
Informs the CST that this thorn provides a given capability, and that this capability has a given
detection script which may be used to configure it (e.g. running an autoconf script or detecting
an external library’s location). The script should output configuration information on its standard
output—the syntax is described below in Section D2.5.1. The script may also indicate the failure to
detect a capability by returning a non-zero exit code; this will stop the build after the CST stage.

Scripts can be in any language. If an interpreter is needed to run the script, for example Perl, this
should be indicated by the LANG option.

The specified options are checked for in the original configuration, and any options passed on the
command line (including an ‘options’ file) at compile time when the thorn is added, or if the CST
is rerun. These options need be set only once, and will be remembered between builds.

Revision : 5108 D19/D37

D2.5. CONFIGURATION.CCL CHAPTER D2. CONFIGURATION FILE SYNTAX

• REQUIRES <Capability>

Informs the CST that this thorn requires a certain capability to be present. If no thorn providing
the capability is in the ThornList, the build will stop after the CST stage.

OPTIONAL <Capability>

{
DEFINE <macro>

}

Informs the CST that this thorn may use a certain capability, if a thorn providing it is in the
ThornList. If present, the preprocessor macro, macro, will be defined and given the value “1”.

D2.5.1 Configuration Scripts

The configuration script may tell the CST to add certain features to the Cactus environment—either to
the make system or to header files included by thorns. It does this by outputting lines to its standard
output:

• BEGIN DEFINE

<text>

END DEFINE

Places a set of definitions in a header file which will be included by all thorns using this capability
(either through an OPTIONAL or REQUIRES entry in their configuration.ccl files).

• INCLUDE_DIRECTORY <directory>

Adds a directory to the include path used for compiling files in thorns using this capability.

• BEGIN MAKE_DEFINITION

<text>

END MAKE_DEFINITION

Adds a makefile definition into the compilation of all thorns using this capability.

• BEGIN MAKE_DEPENDENCY

<text>

END MAKE_DEPENDENCY

Adds makefile dependency information into the compilation of all thorns using this capability.

• LIBRARY <library>

Adds a library to the final cactus link.

• LIBRARY_DIRECTORY <library>

Adds a directory to the list of directories searched for libraries at link time.

No other lines should be output by the script.

Revision : 5108 D20/D37

Chapter D3

Utility Routines

D3.1 Introduction

As well as the high-level CCTK_* routines, Cactus also provides a set of lower-level Util_* utility routines,
which are mostly independent of the rest of Cactus. This chapter gives a general overview of programming
with these utility routines.

D3.2 Key/Value Tables

D3.2.1 Motivation

Cactus functions may need to pass information through a generic interface. In the past, we have used vari-
ous ad hoc means to do this, and we often had trouble passing ”extra” information that wasn’t anticipated
in the original design. For example, for periodic output of grid variables, CCTK_OutputVarAsByMethod()
requires that any parameters (such as hyperslabbing parameters) be appended as an option string to the
variable’s character string name. Similarly, elliptic solvers often need to pass various parameters, but we
haven’t had a good way to do this.

Key/value tables (tables for short) provide a clean solution to these problems. They’re implemented by
the Util_Table* functions (described in detail in the Reference Manual).

D3.2.2 The Basic Idea

Basically, a table is an object which maps strings to almost arbitrary user-defined data. (If you know
Perl, a table is very much like a Perl hash table. Alternatively, if you know Unix shells, a table is like
the set of all environment variables. As yet another analogy, if you know Awk, a table is like an Awk
associative array.)1

1However, the present Cactus tables implementation is optimized for a relatively small number of distinct keys in any
one table. It will still work OK for huge numbers of keys, but it will be slow.

Revision : 5108 D21/D37

D3.2. KEY/VALUE TABLES CHAPTER D3. UTILITY ROUTINES

More formally, a table is an object which stores a set of keys and a corresponding set of values. We refer
to a (key,value) pair as a table entry.

Keys are C-style null-terminated character strings, with the slash character ‘/’ reserved for future expan-
sion.2

Values are 1-dimensional arrays of any of the usual Cactus data types, described in Section C1.9.8. A
string can be stored by treating it as a 1-dimensional array of CCTK_CHAR (there’s an example of this
below).

The basic “life cycle” of a table looks like this:

1. Some code creates it with Util_TableCreate() or Util_TableClone().

2. Some code (often the same piece of code, but maybe some other piece) sets entries in it us-
ing one or more of the Util_TableSet*(), Util_TableSet*Array(), Util_TableSetGeneric(),
Util_TableSetGenericArray(), and/or Util_TableSetString() functions.

3. Some other piece or pieces of code can get (copies of) the values which were set, using one or more of
the Util_TableGet*(), Util_TableGet*Array(), Util_TableGetGeneric(), Util_TableGetGenericArray(),
and/or Util_TableGetString() functions.

4. When everyone is through with a table, some (single) piece of code should destroy it with Util_TableDestroy().

There are also convenience functions Util_TableSetFromString() to set entries in a table based on a
parameter-file-style string, and Util_TableCreateFromString() to create a table and then set entries
in it based on a parameter-file-style string.

As well, there are “table iterator” functions Util_TableIt*() to allow manipulation of a table even if
you don’t know its keys.

A table has an integer “flags word” which may be used to specify various options, via bit flags defined in
util_Table.h. For example, the flags word can be used to control whether keys should be compared as
case sensitive or case insensitive strings. See the detailed function description of Util_TableCreate()
in the Reference Manual for a list of the possible bit flags and their semantics.

D3.2.3 A Simple Example

Here’s a simple example (in C)3 of how to use a table:

#include "util_Table.h"

#include "cctk.h"

/* create a table and set some entries in it */

int handle = Util_TableCreate(UTIL_TABLE_FLAGS_DEFAULT);

Util_TableSetInt(handle, 2, "two");

Util_TableSetReal(handle, 3.14, "pi");

2Think of hierarchical tables for storing tree-like data structures.
3All (or almost all) of the table routines are also usable from Fortran. See the full descriptions in the Reference Manual

for details.

Revision : 5108 D22/D37

D3.2. KEY/VALUE TABLES CHAPTER D3. UTILITY ROUTINES

...

/* get the values from the table */

CCTK_INT two_value;

CCTK_REAL pi_value;

Util_TableGetInt(handle, &two_value, "two"); /* sets two_value = 2 */

Util_TableGetReal(handle, &pi_value, "pi"); /* sets pi_value = 3.14 */

Actually, you shouldn’t write code like this—in the real world errors sometimes happen, and it’s much
better to catch them close to their point of occurrence, rather than silently produce garbage results or
crash your program. So, the right thing to do is to always check for errors. To allow this, all the table
routines return a status, which is zero or positive for a successful return, but negative if and only if some
sort of error has occurred.4 So, the above example should be rewritten like this:

#include "util_Table.h"

/* create a table and set some entries in it */

int handle = Util_TableCreate(UTIL_TABLE_FLAGS_DEFAULT);

if (handle < 0)

CCTK_WARN(CCTK_WARN_ABORT, "couldn’t create table!");

/* try to set some table entries */

if (Util_TableSetInt(handle, 2, "two") < 0)

CCTK_WARN(CCTK_WARN_ABORT, "couldn’t set integer value in table!");

if (Util_TableSetReal(handle, 3.14, "pi") < 0)

CCTK_WARN(CCTK_WARN_ABORT, "couldn’t set real value in table!");

...

/* try to get the values from the table */

CCTK_INT two_value;

CCTK_REAL pi_value;

if (Util_TableGetInt(handle, &two_value, "two") < 0)

CCTK_WARN(CCTK_WARN_ABORT, "couldn’t get integer value from table!");

if (Util_TableGetReal(handle, &pi_value, "pi") < 0)

CCTK_WARN(CCTK_WARN_ABORT, "couldn’t get integer value from table!");

/* if we get to here, then two_value = 2 and pi_value = 3.14 */

D3.2.4 Arrays as Table Values

As well as a single numbers (or characters or pointers), tables can also store 1-dimensional arrays of
numbers (or characters or pointers).5

For example (continuing the previous example):

4Often (as in the examples here) you don’t care about the details of which error occurred. But if you do, there are
various error codes defined in util Table.h and util ErrorCodes.h; the detailed function descriptions in the Reference
Manual say which error codes each function can return.

5Note that the table makes (stores) a copy of the array you pass in, so it’s somewhat inefficient to store a large array
(e.g. a grid function) this way. If this is a problem, consider storing a CCTK POINTER (pointing to the array) in the table
instead. (Of course, this requires that you ensure that the array still exists whenever that CCTK POINTER is used.)

Revision : 5108 D23/D37

D3.2. KEY/VALUE TABLES CHAPTER D3. UTILITY ROUTINES

static const CCTK_INT a[3] = { 42, 69, 105 };

if (Util_TableSetIntArray(handle, 3, a, "my array") < 0)

CCTK_WARN(CCTK_WARN_ABORT, "couldn’t set integer array value in table!");

...

CCTK_INT blah[10];

int count = Util_TableGetIntArray(handle, 10, blah, "my array");

if (count < 0)

CCTK_WARN(CCTK_WARN_ABORT, "couldn’t get integer array value from table!");

/* now count = 3, blah[0] = 42, blah[1] = 69, blah[2] = 105, */

/* and all remaining elements of blah[] are unchanged */

As you can see, a table entry remembers the length of any array value that has been stored in it.6

If you only want the first few values of a larger array, just pass in the appropriate length of your array,
that’s OK:

CCTK_INT blah2[2];

int count = Util_TableGetIntArray(handle, 2, blah2, "my array");

if (count < 0)

CCTK_WARN(CCTK_WARN_ABORT, "couldn’t get integer array value from table!");

/* now count = 3, blah2[0] = 42, blah2[1] = 69 */

You can even ask for just the first value:

CCTK_INT blah1;

int count = Util_TableGetInt(handle, &blah1, "my array");

if (count < 0)

CCTK_WARN(CCTK_WARN_ABORT, "couldn’t get integer array value from table!");

/* now count = 3, blah1 = 42 */

D3.2.5 Character Strings

One very common thing you might want to store in a table is a character string. While you could do this
by explicitly storing an array of CCTK_CHAR, there are also routines specially for conveniently setting and
getting strings:

if (Util_TableSetString(handle, "black holes are fun", "bh") < 0)

CCTK_WARN(CCTK_WARN_ABORT, "couldn’t set string value in table!");

...

char buffer[50];

if (Util_TableGetString(handle, 50, buffer, "bh") < 0)

CCTK_WARN(CCTK_WARN_ABORT, "couldn’t get string value from table!");

/* now buffer[] contains the string "black holes are fun" */

6In fact, actually all table values are arrays—setting or getting a single value is just the special case where the array
length is 1.

Revision : 5108 D24/D37

D3.2. KEY/VALUE TABLES CHAPTER D3. UTILITY ROUTINES

Util_TableGetString() guarantees that the string is terminated by a null character (‘\0’), and also
returns an error if the string is too long for the buffer.

D3.2.6 Convenience Routines

There are also convenience routines for the common case of setting values in a table based on a string.

For example, the following code sets up exactly the same table as the example in Section D3.2.3:

#include <util_Table.h>

/* create a table and set some values in it */

int handle = Util_TableCreate(UTIL_TABLE_FLAGS_DEFAULT);

if (handle < 0)

CCTK_WARN(CCTK_WARN_ABORT, "couldn’t create table!");

/* try to set some table entries */

if (Util_TableSetFromString(handle, "two=2 pi=3.14") != 2)

CCTK_WARN(CCTK_WARN_ABORT, "couldn’t set values in table!");

There is also an even higher-level convenience function Util_TableCreateFromString(): this creates a
table with the case insensitive flag set (to match Cactus parameter file semantics), then (assuming no
errors occurred) calls Util_TableSetFromString() to set values in the table.

For example, the following code sets up a table (with the case insensitive flag set) with four entries: an
integer number (two), a real number (pi), a string (buffer), and an integer array with three elements
(array):

#include <util_Table.h>

int handle = Util_TableCreateFromString(" two = 2 "

" pi = 3.14 "

" buffer = ’Hello World’ "

" array = { 1 2 3 }");

if (handle < 0)

CCTK_WARN(CCTK_WARN_ABORT, "couldn’t create table from string!");

Note that this code passes a single string to Util_TableCreateFromString()7, which then gets parsed
into key/value pairs, with the key separated from its corresponding value by an equals sign.

Values for numbers are converted into integers (CCTK INT) if possible (no decimal point appears in the
value), otherwise into reals (CCTK REAL). Strings must be enclosed in either single or double quotes. String
values in single quotes are interpreted literally, strings in double quotes may contain character escape
codes which then will be interpreted as in C. Arrays must be enclosed in curly braces, array elements
must be single numbers of the same type (either all integer or all real).

7C automatically concatenates adjacent character string constants separated only by whitespace.

Revision : 5108 D25/D37

D3.2. KEY/VALUE TABLES CHAPTER D3. UTILITY ROUTINES

D3.2.7 Table Iterators

In the examples up to now, the code, which wanted to get values from the table, knew what the keys
were. It’s also useful to be able to write generic code which can operate on a table without knowing the
keys. “Table iterators” (“iterators”, for short) are used for this.

An iterator is an abstraction of a pointer to a particular table entry. Iterators are analogous to the DIR *

pointers used by the POSIX opendir(), readdir(), closedir(), and similar functions, to Perl hash
tables’ each(), keys(), and values(), and to the C++ Standard Template Library’s forward iterators.

At any time, the entries in a table may be considered to be in some arbitrary (implementation-defined)
order; an iterator may be used to walk through some or all of the table entries in this order. This
order is guaranteed to remain unchanged for any given table, so long as no changes are made to
that table, i.e. so long as no Util_TableSet*(), Util_TableSet*Array(), Util_TableSetGeneric(),
Util_TableSetGenericArray(), Util_TableSetString(), or Util_TableDeleteKey() calls are made
on that table (making such calls on other tables doesn’t matter). The order may change if there is any
change in the table, and it may differ even between different tables with identical key/value contents
(including those produced by Util_TableClone()).8

Any change in the table also invalidates all iterators pointing anywhere in the table; using any such
iterator is an error. Multiple iterators may point into the same table; they all use the same order, and
(unlike in Perl) they’re all independent.

The detailed function description in the Reference Manual for Util_TableItQueryKeyValueInfo() has
an example of using an iterator to print out all the entries in a table.

D3.2.8 Multithreading and Multiprocessor Issues

At the moment, the table functions are not thread-safe in a multithreaded environment.

Note that tables and iterators are process-wide, i.e. all threads see the same tables and iterators (think
of them as like the Unix current working directory, with the various routines which modify the table or
change iterators acting like a Unix chdir() system call).

In a multiprocessor environment, tables are always processor-local.

D3.2.9 Metadata about All Tables

Tables do not themselves have names or other attributes. However, we may add some special “system
tables” to be used by Cactus itself to store this sort of information for those cases where it’s needed. For
example, we may add support for a “checkpoint me” bit in a table’s flags word, so that if you want a
table to be checkpointed, you just need to set this bit. In this case, the table will probably get a system
generated name in the checkpoint dump file. But if you want the table to have some other name in
the dump file, then you need to tell the checkpointing code that, by setting an appropriate entry in a
checkpoint table. (You would find the checkpoint table by looking in a special “master system table”
that records handles of other interesting tables.)

8For example, if tables were implemented by hashing, the internal order could be that of the hash buckets, and the hash
function could depend on the internal table address.

Revision : 5108 D26/D37

Chapter D4

Schedule Bins

Using the schedule.ccl files, thorn functions can be scheduled to run in the different timebins which
are executed by the Cactus flesh. This chapter describes these standard timebins, and shows the flow of
program execution through them.

Scheduled functions must be declared as

In C: #include "cctk_Arguments.h"

void MyFunction (CCTK_ARGUMENTS);

In C++: #include "cctk_Arguments.h"

extern "C" void MyFunction (CCTK_ARGUMENTS);

In Fortran: #include "cctk_Arguments.h"

subroutine MyFunction (CCTK_ARGUMENTS)

DECLARE_CCTK_ARGUMENTS

end

Exceptions are the functions that are scheduled in the bins CCTK STARTUP, CCTK RECOVER PARAMETERS,
and CCTK SHUTDOWN. They do not take arguments, and they return an integer. They must be declared
as

In C: int MyFunction (void);

In C++ extern "C" int MyFunction ();

In Fortran: integer function MyFunction ()

end

The return value in CCTK STARTUP and CCTK SHUTDOWN is unused, and might in the future be used to
indicate whether an error occurred. You should return 0.

The return value in CCTK RECOVER PARAMETERS should be zero, positive, or negative, indicating that
no parameters were recovered, that parameters were recovered successfully, or that an error occurred,
respectively. Routines in this bin are executed in alphabetical order, according to the owning thorn’s
name, until one returns a positive value. All later routines are ignored. Schedule clauses BEFORE, AFTER,
WHILE, IF, etc., are ignored.

Revision : 5108 D27/D37

CHAPTER D4. SCHEDULE BINS

CCTK RECOVER PARAMETERS

Used by thorns with relevant I/O methods as the point to read parameters when
recovering from checkpoint files. Grid variables are not available in this timebin.
Scheduling in this timebin is special (see above).

CCTK STARTUP Run before any grids are constructed, this is the timebin, for example, where grid
independent information (e.g. output methods, reduction operators) is registered.
Note that since no grids are setup at this point, grid variables cannot be used in
routines scheduled here.

CCTK WRAGH This timebin is executed when all parameters are known, but before the driver
thorn constructs the grid. It should only be used to set up information that is
needed by the driver.

CCTK PARAMCHECK This timebin is for thorns to check the validity of parameter combinations. This
bin is also executed before the grid hierarchy is made, so that routines scheduled
here only have access to the global grid size and the parameters.

CCTK PREREGRIDINITIAL

This timebin is used in mesh refinement settings. It is ignored for unigrid runs. This
bin is executed whenever the grid hierarchy is about to change during evolution;
compare CCTK PREREGRID. Routines that decide the new grid structure should be
scheduled in this bin.

CCTK POSTREGRIDINITIAL

This timebin is used in mesh refinement settings. It is ignored for unigrid runs. This
bin is executed whenever the grid hierarchy or patch setup has changed during
evolution; see CCTK POSTREGRID. It is, e.g. necessary to re-apply the boundary
conditions or recalculate the grid points’ coordinates after every changing the grid
hierarchy.

CCTK BASEGRID This timebin is executed very early after a driver thorn constructs grid; this bin
should only be used to set up coordinate systems on the newly created grids.

CCTK INITIAL This is the place to set up any required initial data. This timebin is not run when
recovering from a checkpoint file.

CCTK POSTINITIAL This is the place to modify initial data, or to calculate data that depend on the
initial data. This timebin is also not run when recovering from a checkpoint file.

CCTK POSTRESTRICTINITIAL

This timebin is used only in mesh refinement settings. It is ignored for unigrid
runs. This bin is executed after each restriction operation while initial data are set
up; compare CCTK POSTRESTRICT. It is, e.g. necessary to re-apply the boundary
conditions after every restriction operation.

CCTK POSTPOSTINITIAL

This is the place to modify initial data, or to calculate data that depend on the
initial data. This timebin is executed after the recursive initialisation of finer grids
if there is a mesh refinement hierarchy, and it is also not run when recovering from
a checkpoint file.

CCTK RECOVER VARIABLES

Used by thorns with relevant I/O methods as the point to read in all the grid
variables when recovering from checkpoint files.

CCTK POST RECOVER VARIABLES

This timebin exists for scheduling any functions which need to modify grid variables
after recovery.

Revision : 5108 D28/D37

CHAPTER D4. SCHEDULE BINS

CCTK CPINITIAL Used by thorns with relevant I/O methods as the point to checkpoint initial data
if required.

CCTK CHECKPOINT Used by thorns with relevant I/O methods as the point to checkpoint data during
the iterative loop when required.

CCTK PREREGRID This timebin is used in mesh refinement settings. It is ignored for unigrid runs. This
bin is executed whenever the grid hierarchy is about to change during evolution;
compare CCTK PREREGRIDINITIAL. Routines that decide the new grid structure
should be scheduled in this bin.

CCTK POSTREGRID This timebin is used in mesh refinement settings. It is ignored for unigrid runs.
This bin is executed whenever the grid hierarchy or patch setup has changed dur-
ing evolution; see CCTK POSTREGRIDINITIAL. It is, e.g. necessary to re-apply the
boundary conditions or recalculate the grid points’ coordinates after every changing
the grid hierarchy.

CCTK PRESTEP The timebin for scheduling any routines which need to be executed before any rou-
tines in the main evolution step. This timebin exists for thorn writers convenience,
the BEFORE, AFTER, etc., functionality of the schedule.ccl file should allow all
functions to be scheduled in the main CCTK EVOL timebin.

CCTK EVOL The timebin for the main evolution step.

CCTK POSTRESTRICT This timebin is used only in mesh refinement settings. It is ignored for unigrid
runs. This bin is executed after each restriction operation during evolution; com-
pare CCTK POSTRESTRICTINITIAL. It is, e.g. necessary to re-apply the boundary
conditions after every restriction operation.

CCTK POSTSTEP The timebin for scheduling any routines which need to be executed after all the
routines in the main evolution step. This timebin exists for thorn writers conve-
nience, the BEFORE, AFTER, etc., functionality of the schedule.ccl file should allow
all functions to be scheduled in the main CCTK EVOL timebin.

CCTK ANALYSIS The ANALYSIS timebin is special, in that it is closely coupled with output, and
routines which are scheduled here are typically only executed if output of analysis
variables is required. Routines which perform analysis should be independent of
the main evolution loop (that is, it should not matter for the results of a simulation
whether routines in this timebin are executed or not).

CCTK TERMINATE Called after the main iteration loop when Cactus terminates. Note that sometime,
in this timebin, a driver thorn should be destroying the grid hierarchy and removing
grid variables.

CCTK SHUTDOWN Cactus final shutdown routines, after the grid hierarchy has been destroyed. Grid
variables are no longer available.

Revision : 5108 D29/D37

Chapter D5

Flesh Parameters

The flesh parameters are defined in the file src/param.ccl.

D5.1 Private Parameters

Here, the default value is shown in square brackets, while curly braces show allowed parameter values.

allow mixeddim gfs

Allow use of GFs from different dimensions [no]

cctk brief output Give only brief output [no]

cctk full warnings

Give detailed information for each warning statement [yes]

cctk run title Description of this simulation [""]

cctk show banners Show any registered banners for the different thorns [yes]

cctk show schedule

Print the scheduling tree to standard output [yes]

cctk strong param check

Die on parameter errors in CCTK PARAMCHECK [yes]

cctk timer output Give timing information [off] {off, full}

manual cache setup

Set the cache size manually [no]

manual cache size The size to set the cache to if not done automatically (bytes) [0]

manual cacheline bytes

The size of a cacheline if not set automatically (bytes) [0]

recovery mode How to behave when recovering from a checkpoint [strict] {strict, relaxed}

highlight warning messages

Highlight CCTK warning messages [yes]

Revision : 5108 D30/D37

D5.2. RESTRICTED PARAMETERS CHAPTER D5. FLESH PARAMETERS

info format Specifies the content and format of CCTK INFO()/CCTK VInfo() messages. [basic]
{"basic", "numeric time stamp", "human-readable time stamp",
"full time stamp"}

D5.2 Restricted Parameters

cctk final time Final time for evolution, overridden by cctk itlast unless it is positive [-1.0]

cctk initial time Initial time for evolution [0.0]

cctk itlast Final iteration number [10]

max runtime Terminate evolution loop after a certain elapsed runtime (in minutes); set to zero
to disable this termination condition [0]

terminate Condition on which to terminate evolution loop [iteration] {never, iteration,

time, runtime, any, all}

terminate next Terminate on next iteration ? [no]

Revision : 5108 D31/D37

Chapter D6

Using TRAC

TRAC is a web-based tool for tracking bug reports and feature requests. Cactus bugs and feature
requests are handled using the TRAC system hosted by the Einstein Toolkit consortium at http://

trac.einsteintoolkit.org. Click on New Ticket to create a new ticket in the system.

Here, we briefly describe the main categories when creating a Cactus problem report.

Summary A brief and informative subject line.

Description Describe your problem precisely, if you get a core dump, include the stack trace, and
if possible give the minimal number of thorns, this problems occurs with. Describe
how to reproduce the problem if it is not clear. Note that the description field
(and the comments) allow a wiki-style syntax. This means that blocks of code or
error messages should be surrounded by {{{ ... }}} in order to avoid the text being
interpreted as wiki markup. Click on the WikiFormatting link to learn more about
the available markup.

Type Choose defect for cases where there is clearly something wrong and enhancement
for a feature request.

Priority Pick whichever level is appropriate. Blocker for issues that stop you using the
code, critical for very serious problems, major for things which should definitely
be addressed, minor for things which would be good to fix but not essential, and
optional for very low priority items. If in doubt, choose either major or minor.

Milestone This is used by the maintainers to indicate an intention to fix the problem before
a particular release of Cactus.

Component Use Cactus for problems related to the Cactus flesh or one of the thorns in one of
the Cactus arrangements (those in arrangements with names starting “Cactus”).

Version The Cactus release you are using. You can find this out, for example, from an
executable by typing cactus <config> -v.

Keywords Here you can enter a space-separated list of keywords which might be useful for
people searching for specific types of tickets. For example, you could enter the
thorn name if the problem is with a specific thorn, the keyword testsuite if the
ticket is related to a test failure, or the keyword documentation if the problem is
related to the documentation.

Revision : 5108 D32/D37

http://trac.einsteintoolkit.org
http://trac.einsteintoolkit.org

CHAPTER D6. USING TRAC

CC Email addresses of people who should be emailed on any change to the ticket, such
as a comment being added.

Email or username
Your email address, so we can get in contact with you.

If you have an account on the computer systems at CCT, you can log in to the TRAC system in order
to be recognised. Otherwise, your comments will appear as “anonymous”.

Revision : 5108 D33/D37

Chapter D7

Using SVN

SVN is a version control system, which allows you to keep old versions of files (usually source code), log
of when, and why changes occurred, and who made them, etc. SVN does not just operate on one file at a
time or one directory at a time, but operates on hierarchical collections of directories consisting of version
controlled files. SVN helps to manage releases and to control the concurrent editing of source files among
multiple authors. SVN can be obtained from http://subversion.apache.org, but is usually available
on workstations, or can be easily installed using a package manager.

An SVN repository located on a server contains a hierarchy of directory and files, and any subdirectory
can be checked out independently. The Cactus flesh and the Cactus arrangements are organized as
repositories on the server svn.cactuscode.org. You can browse the contents of this repository using a
web browser at the URL http://svn.cactuscode.org.

You do not need to know about SVN in order to download or update Cactus using the GetComponents
script, though you must have SVN installed. In order to contribute changes to Cactus files or your
own thorns, which may also be stored in SVN, you will need a basic understanding of SVN. For more
information about

D7.1 Essential SVN Commands

Assuming that you have checked out Cactus using the GetComponents script, the following commands
are the minimum you will need in order to work with SVN in Cactus.

svn update Execute this command from within your working directory when you wish to update
your copies of source files from changes that other developers have made to the
source in the repository. Merges are performed automatically when possible, a
warning is issued if manual resolution is required for conflicting changes.

svn add file Use this command to enroll new files in SVN records of your working directory.
The files will be added to the repository the next time you run ‘svn commit’.

svn commit file Use this command to add your local changes to the source to the repository and,
thereby, making it publically available to checkouts and updates by other users.
You cannot commit a newly created file unless you have added it.

Revision : 5108 D34/D37

http://subversion.apache.org
http://svn.cactuscode.org

D7.1. ESSENTIAL SVN COMMANDS CHAPTER D7. USING SVN

svn diff file Show differences between a file in your working directory and a file in the source
repository, or between two revisions in source repository. (Does not change either
repository or working directory.) For example, to see the difference between versions
1.8 and 1.9 of a file foobar.c:

svn diff -r 1.8 1.9 foobar.c

svn remove file Remove files from the source repository, pending an svn commit on the same files.

svn status [file] This command returns the current status of your local copy relative to the reposi-
tory: e.g. it indicates local modifications and possible updates.

For more information about using SVN, you can read the documentation provided at http://svnbook.
red-bean.com.

Revision : 5108 D35/D37

http://svnbook.red-bean.com
http://svnbook.red-bean.com

Chapter D8

Using Tags

Finding your way around in the Cactus structure can be pretty difficult to handle. To make life easier
there is support for tags, which lets you browse the code easily from within Emacs/XEmacs or vi. A
tags database can be generated with gmake:

D8.1 Tags with Emacs

The command gmake TAGS will create a database for a routine reference table to be used within Emacs.
This database can be accessed within Emacs if you add either of the following lines to your .emacs file:
(setq tags-file-name "CACTUS HOME/TAGS") XOR
(setq tag-table-alist ’(("CACTUS HOME" . "CACTUS HOME/TAGS")))

where CACTUS HOME is your Cactus directory.

You can now easily navigate your Cactus flesh and Toolkits by searching for functions or “tags”:

1. Alt. will find a tag

2. Alt, will find the next matching tag

3. Alt* will go back to the last matched tag

If you add the following lines to your .emacs file, the files found with tags will opened in read-only mode:

(defun find-tag-readonly (&rest a)

(interactive)

(call-interactively ‘find-tag a)

(if (eq nil buffer-read-only) (setq buffer-read-only t)))

(defun find-tag-readonly-next (&rest a)

(interactive)

(call-interactively ‘tags-loop-continue a)

(if (eq nil buffer-read-only) (setq buffer-read-only t)))

Revision : 5108 D36/D37

D8.2. TAGS WITH VI CHAPTER D8. USING TAGS

(global-set-key [(control meta \.)] ’find-tag-readonly)

(global-set-key [(control meta \,)] ’find-tag-readonly-next)

The key strokes to use when you want to browse in read-only mode are:

1. CTRL Alt. will find a tag and open the file in read-only mode

2. CTRL Alt, will find the next matching tag in read-only mode

D8.2 Tags with vi

The commands available are highly dependent upon the version of vi, but the following is a selection of
commands which may work.

1. vi -t tag Start vi and position the cursor at the file and line where ‘tag’ is defined.

2. Control-] Find the tag under the cursor.

3. :ta tag Find a tag.

4. :tnext Find the next matching tag.

5. :pop Return to previous location before jump to tag.

6. Control-T Return to previous location before jump to tag (not widely implemented).

Note: Currently some of the CCTK FILEVERSION() macros at the top of every source file don’t have a
trailing semicolon, which confuses the etags and ctags programs, so tags does not find the first subroutine
in any file with this problem.

Revision : 5108 D37/D37

	A Introduction
	Getting Started
	Obtaining Cactus
	Directory Structure

	Compiling a Cactus application
	Creating a Configuration

	Running a Cactus application

	Getting and looking at output
	Screen output
	File output

	Checkpointing/Recovery
	Reporting bugs

	B Additional notes
	Installation
	Required Software
	Supported Architectures
	Note

	Compilation
	Configuration Options
	Available Options

	Compiling with Extra Packages
	MPI: Message Passing Interface
	HDF5: Hierarchical Data Format version 5
	LAPACK: Linear Algebra PACKage
	PETSc: Portable, Extensible Toolkit for Scientific Computation
	Pthreads: POSIX threads

	File Layout
	Building and Administering a Configuration
	gmake Targets for Building and Administering Configurations
	Compiling in Thorns
	Notes and Caveats
	gmake Options for building configurations

	Other gmake Targets
	Testing

	Runtime options
	Command-Line Options
	Parameter File Syntax
	Thorn Documentation

	Getting and Looking at Output
	Screen Output
	Output

	C Thorn Writing
	Application thorns
	Thorn Concepts
	Thorns
	Arrangements
	Implementations

	Anatomy of a Thorn
	Thorns
	Creating a Thorn
	Configuring your Thorn
	Naming Conventions for Source Files
	Adding Source Files

	Cactus Variables
	Data Type
	Group Types
	Timelevels
	Size and Distrib
	Ghost Zones
	Information about Grid Variables

	Cactus Parameters
	Types and Ranges
	Scope
	Steerable

	Scheduling
	Schedule Bins
	Groups
	Schedule Options
	The Schedule Block
	How Cactus Calls Scheduled Functions

	Writing a Thorn
	Thorn Programming Languages
	What the Flesh Provides
	Parallelisation

	Cactus Application Interfaces
	Iterating Over Grid Points
	Coordinates
	I/O
	Interpolation Operators
	Reduction Operators

	Completing a Thorn
	Commenting Source Code
	Providing Runtime Information
	Error Handling, Warnings and Code Termination
	Adding Documentation
	Adding a Test Suite

	Advanced Thorn Writing
	Using Cactus Timers
	Include Files
	Memory Tracing
	Calls to different language
	Function aliasing
	Naming Conventions
	General Naming Conventions
	Data Types and Sizes

	Telling the Make system What to Do
	Basic Recipe
	Make Concepts
	The Four Files
	How your code is built

	Infrastructure Thorns
	Concepts and Terminology
	Overloading and Registration
	GH Extensions
	I/O Methods

	GH Extensions
	Overloadable and Registerable Functions in Main
	Overloadable and Registerable Functions in Comm
	Overloadable and Registerable Functions in I/O
	Drivers
	Anatomy
	Startup
	The GH Extension
	Memory Functions

	I/O Methods
	I/O Method Registration
	Periodic Output of Grid Variables
	Triggered Output of Grid Variables
	Unconditional Output of Grid Variables

	Checkpointing/Recovery Methods
	Checkpointing Invocation
	Recovery Invocation

	Clocks for Timing

	D Appendices
	Glossary
	Configuration File Syntax
	General Concepts
	interface.ccl
	Header Block
	Include Files
	Function Aliasing
	Variable Blocks

	param.ccl
	Parameter Data Scoping Items
	Parameter Object Specification Items

	schedule.ccl
	Assignment Statements
	Schedule Blocks
	Conditional Statements

	configuration.ccl
	Configuration Scripts

	Utility Routines
	Introduction
	Key/Value Tables
	Motivation
	The Basic Idea
	A Simple Example
	Arrays as Table Values
	Character Strings
	Convenience Routines
	Table Iterators
	Multithreading and Multiprocessor Issues
	Metadata about All Tables

	Schedule Bins
	Flesh Parameters
	Private Parameters
	Restricted Parameters

	Using TRAC
	Using SVN
	Essential SVN Commands

	Using Tags
	Tags with Emacs
	Tags with vi

