CactusWave

Gabrielle Allen, Tom Goodale

1999

Abstract

Set of thorns for evolving the standard 3D scalar wave equation. The package includes initial data, evolver, and analysis thorns in a variety of programming languages.

1 Purpose

To demonstrate the use of the Cactus code through a simple, illustrative example.
The model problem solved is the 3D scalar wave equation in Cartesian coordinates,

$$
\frac{\partial^{2} \phi}{\partial t^{2}}=\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}
$$

The numerical solution of this equation requires initial data to be specified for

$$
\phi(t=0), \quad \frac{\partial \phi}{\partial t}(t=0)
$$

The numerical method employed in these thorns to solve for ϕ is a standard 2nd order centered finite difference method. The solution $\phi(t, x, y, z)$ is discretised using

$$
\phi\left(t_{i}, x_{i}, y_{i}, z_{i}\right)=\phi_{i, j, k}^{n}
$$

where, for example,

$$
x_{i}=x_{0}+i \Delta x
$$

The solution at any timeslice can then be found iteratively using the previous two timeslices using the algorithm

$$
\begin{align*}
\phi^{n+1}= & 2\left(1-\rho_{x}^{2}-\rho_{y}^{2}-\rho_{z}^{2}\right) \phi_{i, j, k}^{n}-\phi_{i, j, k}^{n-1}+\rho_{x}^{2}\left(\phi_{i+1, j, k}^{n}-\phi_{i-1, j, k}^{n}\right) \\
& +\rho_{y}^{2}\left(\phi_{i, j+1, k}^{n}-\phi_{i, j-1, k}^{n}\right)+\rho_{z}^{2}\left(\phi_{i, j, k+1}^{n}-\phi_{i, j, k-1}^{n}\right) \tag{1}
\end{align*}
$$

where we define the Courant factors

$$
\rho_{x}=\frac{\Delta t}{\Delta x} \quad \rho_{y}=\frac{\Delta t}{\Delta y} \quad \rho_{z}=\frac{\Delta t}{\Delta z}
$$

2 Comments

Here we give a brief description of each of the thorns contained in this arrangement

- IDScalarWave Different initial data sets, all of which are analytic.
- IDScalarWaveCXX The same as IDScalarWave but implemented in C++.
- IDScalarWaveElliptic Initial data sets from solving an elliptic equation. At the moment this initial data is rather artificial, and is just here to give a simple demonstration of using an elliptic solver.
- WaveToyC The evolver for the scalar field, written in C.
- WaveToyF77 The same as WaveToyC, but written in F77 to demonstrate the use of implementations.
- WaveToyF90 The same as the two evolver thorns above, but this time to show the difference between F77 and F90, and to further demonstrate implementations.
- WaveToyFreeF90 The same as WaveToyF90, but written with free-format F90 rather than fixed.
- WaveToyCXX The same as WaveToyC, but written in C++.

