
Boundary Conditions

Miguel Alcubierre
Gabrielle Allen

Gerd Lanfermann
David Rideout

Date: 2006/10/05 16:54:29

Abstract

Provides a generic interface to boundary conditions, and provides a set of standard boundary
conditions for one, two, and three dimensional grid variables.

1 Introduction

This thorn provides a generic method for registering routines to perform boundary conditions, and se-
lecting variables to have these boundary conditions applied to them. In addition, it provides abstraction
which allows all considerations of symmetry to be separated from those of physical boundary conditions.
The general idea is that codes which use boundary conditions, be they physical or symmetry conditions,
need not know anything about the thorns which provide them.

This thorn also contains some standard boundary conditions, most of which can be used with any spatial
dimension and data type.

1.1 Local and non-local boundary conditions

Boundary conditions can be local, meaning that the boundary point can be updated based on data in
its immediate vicinity, or non-local, meaning that the new value on the boundary depends on data from
a remote region of the computational domain (for a parallel simulation this data could for example be
physically located on several different processors). An example of the latter is a “rotating” symmetry
condition, which arises e.g. when one uses a quadrant to simulate a physical domain which possesses a
rotational symmetry.

1.2 Symmetry and physical boundary conditions

Symmetry boundary conditions are those that arise by viewing the computational domain as a subregion
of some larger domain which possesses symmetries. These symmetries allow a simulation of the subregion
to act as an effective simulation of the larger encompassing domain, because the latter can be inferred
from the former via the symmetry. For example, one can often simulate a rotating star by ‘slicing’ the

1



space in half through the equatorial plane, simulating only one half, and placing a reflection boundary
condition at this plane. The symmetry can be regarded as a property of the underlying computational
grid upon which the simulation takes place.

It is often possible to describe the symmetry of a physical problem in terms of multiple ‘simpler’ sym-
metries. Going back to the rotating star example, we can note that there is also a rotational symmetry
about the axis of the star. Thus it is sufficient to simulate only the upper half of a φ = const plane of
the star, since rotational symmetry will recover half of the star from the single plane, and the reflection
symmetry can recover the other half of the star. To do this we use two symmetry boundary conditions,
one for the rotational symmetry and one for the reflection symmetry. At the edges and corner grid points
there will be two symmetry boundary conditions active, which illustrates a general point about symmetry
boundary conditions, namely that there can be any number of them active at any given grid point. In
addition symmetry boundary conditions are often non-local, for example a periodic boundary condition
which applies in simulating plasma in a tokamak.

Physical boundary conditions are motivated by the physics of the quantity that the grid variable rep-
resents, such as one which allows outgoing waves of a scalar field to propagate off the grid, but does
not allow ingoing waves or reflections. Usually the same physical boundary condition is applied to all
external boundaries of the computational domain, however this is not always the case. Currently thorn
Boundary allows a separate boundary condition to be applied to each face of the domain, however this is
only implemented at the moment using the older deprecated interface. Face specific calls will be available
using the current interface shortly. It is also possible that one will want to use different physical boundary
conditions at different regions of a face, and support for this can be added if necessary. Usually physical
boundary conditions are local. A non-local physical boundary condition may arise e.g. from a need to
solve an elliptic equation at the boundary. As opposed to symmetry boundary conditions, it only makes
sense to have a single physical boundary condition active at a given grid point.1

To summarize, a ‘physics’ thorn, such as a spacetime evolution thorn, knows only about physical boundary
conditions. Symmetry boundary conditions are aspects of the grid and are managed by other thorns.

2 The generic boundary interface

The implementation Boundary provides a number of aliased functions, which allow application thorns
to register routines which provide a particular physical boundary condition, and also to select variables
or groups of variables to have boundary conditions applied to whenever the ApplyBCs schedule group
is scheduled (see section 2.3). In addition, an aliased function is provided which returns a list of grid
variables selected for a boundary condition (see appendix 11).

2.1 Boundary condition registration

To register a routine to provide some physical boundary condition, use

Boundary_RegisterPhysicalBC(CCTK_POINTER cctkGH,

1It is possible that one may wish to modify the value of the field at the boundary, after a physical boundary condition has
already been applied. For example, one may wish to add a small amount of noise at the boundary to test code stability. This
added ‘term’ is not a physical boundary condition in itself, however, and this cannot be registered as such. To implement
such a scheme one would treat the noise in a manner similar to symmetry boundary conditions, scheduling a routine during
BoundaryConditions (see below), after Boundary ApplyPhysicalBCs, which gets the list of selected variables and adds noise
to their boundaries as desired.

2



phys_bc_fn_ptr function_pointer,
CCTK_STRING bc_name)

where

cctkGH pointer to the grid hierarchy
function pointer pointer to the function providing the boundary condition
bc name name of boundary condition

The function pointer takes arguments

(CCTK_POINTER cctkGH, CCTK_INT num_vars, CCTK_INT *var_indices,
CCTK_INT *faces, CCTK_INT *widths, CCTK_INT *table_handles)

(this defines the type phys bc fn ptr, above) where

cctkGH pointer to the grid hierarchy
num vars number of entries passed in the following three arrays
var indices array of num vars variable indices selected for this boundary condition
faces array of num vars faces specifications (see section 2.4)
widths array of num vars boundary widths (see below)
table handles array of num vars table handles

The table handles hold extra arguments for each application of the boundary condition. The four arrays
are sorted first on table handle, and then on variable index. This way variables which have precisely
the same boundary condition are grouped together, and within this grouping variables are sorted by
index, so that variable groups are stored together. In many cases this sorting will allow a more efficient
implementation of the boundary condition. (At the moment it is not clear how face information should
be considered in the sorting, so it is not.) A null pointer can be passed for function pointer, in which
case no routine is executed when Boundary ApplyPhysicalBCs is called (see section 2.3).

2.2 Boundary condition selection

To select a grid variable to have a boundary condition applied to it, use one of the following aliased
functions:

Boundary_SelectVarForBC(CCTK_POINTER cctkGH,
CCTK_INT faces,
CCTK_INT boundary_width,
CCTK_INT table_handle,
CCTK_STRING var_name,
CCTK_STRING bc_name)

Boundary_SelectVarForBCI(CCTK_POINTER cctkGH,
CCTK_INT faces,
CCTK_INT boundary_width,
CCTK_INT table_handle,

3



CCTK_INT var_index,
CCTK_STRING bc_name)

Boundary_SelectGroupForBC(CCTK_POINTER cctkGH,
CCTK_INT faces,
CCTK_INT boundary_width,
CCTK_INT table_handle,
CCTK_STRING group_name,
CCTK_STRING bc_name)

Boundary_SelectGroupForBCI(CCTK_POINTER cctkGH,
CCTK_INT faces,
CCTK_INT boundary_width,
CCTK_INT table_handle,
CCTK_INT group_index,
CCTK_STRING bc_name)

where

cctkGH pointer to the grid hierarchy
faces set of faces to which to apply the boundary condition
boundary width width (in grid points) of the boundaries
table handle handle for table which holds extra arguments for the boundary condition
var name name of the grid variable
bc name name of the boundary condition
var index index of grid variable
group name name of group of grid variables
group index index of group of grid variables

Each of these functions returns 0 for success, or a negative error code if something went wrong.

Boundary_SelectVarForBC() and Boundary_SelectVarForBCI() select a single grid variable for a bound-
ary condition, using either the variable name or index respectively. Boundary_SelectGroupForBC() and
Boundary_SelectGroupForBCI() select an entire variable group, using either its name or index.

Each of these functions takes a faces specification, a boundary width, and a table handle as additional
arguments. The faces specification is a single integer which identifies a set of faces to which to apply the
boundary condition. See section 2.4 for details. The boundary width is the thickness, in grid points, of
the boundaries.

The table handle identifies a table which holds extra arguments for the particular boundary condition
that is requested. For example, if a negative value is passed for the boundary width, then the boundary
condition will look in this table for a 2d-element integer array, which holds the width of each face of the
boundary (for a d dimensional grid variable). (The first element of the array holds the width of the ‘-x’
face, the second the ‘+x’ face, the third the ‘-y’ face, etc.)

In some cases the table handle is required, so the boundary condition, when it is called within the
BoundaryConditions schedule group (see section 2.3), will return an error code. However, in most cases
it is optional. If one uses an invalid table handle here (such as -1), commonly used default values will be
assumed for all arguments (besides the explicit faces specification and boundary widths). Note that you,
the user, will be creating the table, so you may choose whatever options (such as case sensitivity) you like.
The case of the keys for which the boundary conditions implemented in this thorn search are as given in

4



the documentation, which is currently all capitals. To be safe you may choose to create case-insensitive
tables, however case sensitive tables are slightly faster.

The name of the boundary condition must match that with which the boundary condition providing
function was registered. These names are case insensitive. See section 3 for a list of boundary conditions
provided by thorn Boundary.

2.3 Schedule groups

Implementation Boundary creates two schedule groups

ApplyBCs

and

BoundaryConditions in ApplyBCs BEFORE Boundary_ClearSelection

and schedules two functions Boundary ApplyPhysicalBCs in BoundaryConditions and Boundary ClearSelection
in ApplyBCs. Boundary ApplyPhysicalBCs goes through the list of all selected grid variables, and calls
the registered function corresponding to the requested boundary condition on each. Boundary ClearSelection
clears the list of selected grid variables. A thorn which wishes to have boundary conditions applied sim-
ply schedules ApplyBCs at the appropriate point. Please schedule it as e.g. <MyThorn>_ApplyBCs, to
make each instance of it unique. Boundary ClearSelection ensures that each boundary condition gets
executed exactly once for each selected grid variable.

2.4 Faces

The computational domain is assumed to be in the shape of a n-dimensional ‘rectangle’, which has 2n
n− 1 dimensional faces. (Usually n is three.) Each of these 2n faces is assigned a specific bit in a word,
so that arbitrary subsets can be compactly expressed as a bitwise-or of these individual bits. Macros
defining this mapping of subsets to bits will be provided. For the moment there is only CCTK ALL FACES,
which corresponds to the set of all faces of the domain. If you need face specific calls immediately, please
use the old interface for now.

The mapping of bits to faces will likely be the same as that used for the (optional) BOUNDARY WIDTH array.
Precisely, the rule is as follows. For a d dimensional grid variable, label the elements or bits by integers i
from 0 to 2d−1. Element or bit i gets mapped to face (−)i+1ebic, where bc designates the ‘floor’ function
(greatest integer less than its argument), and ej represents the ‘j-direction’ on the grid.

3 Provided boundary conditions

Thorn Boundary also provides seven standard boundary conditions, which can be applied to one, two, or
three dimensional grid variables. The boundary conditions available are

• Scalar

5



• Flat

• Radiation

• Copy

• Robin

• Static

• None

Registration for each of these can be switched off by setting any of the following parameters to “no” (each
defaults to “yes”)

• register scalar

• register flat

• register radiation

• register copy

• register robin

• register static

• register none

This is useful if you have your own implementation of one of these boundary conditions, which you would
like to use instead.

3.1 General Comments

Note that the number of boundary zones, as expressed in the boundary width argument or the BOUNDARY WIDTH
array, is taken from the total number of grid points presented by Cactus through cctk lssh, etc.

For the moment, these boundary routines may not work properly on grid arrays. Please contact
cactusmaint@cactuscode.org if you run into trouble.

3.1.1 Old interface

The old, direct function call interface to these boundary conditions is still available, and is documented
here, though it is deprecated and will be removed at some point in the future. It is provided for a number
of reasons, the most significant of which is to provide compatibility with existing codes. Another reason
why you might choose to use the old interface is if you have difficulty doing your iterations with the
Cactus scheduler, and thus have trouble scheduling the ApplyBCs schedule group everywhere you need
boundary conditions applied. A third reason may be that you need face specific calls immediately.

You should not run into any special difficulty mixing the old and new interface, just be aware of the order
in which boundary conditions, and code that depends upon them, are executed.

6



Note that if you choose to use the old interface for some boundary conditions, then the symmetry
conditions will not know to apply themselves to those grid variables for which you use the old interface.
To get around this difficulty, simply select these grid variables for the “None” boundary condition, and
be sure that ApplyBCs is scheduled in an appropriate place.

All routines can be called by

• variable name: (<implementation>:<var name> ) Suffix: VN; apply the boundary condition to the
variable with the specified name.

• group name: (<implementation>:<group name>) Suffix: GN; apply the boundary condition to all
variables in the group.

• variable index: Suffix: VI; apply the boundary condition to the variable with the specified variable
index.

• group index: Suffix: GI apply the boundary condition to all variables in the group with the specified
group index.

For the boundary conditions in individual coordinate directions, use
dir=-1 to apply at x = xmin

dir= 1 to apply at x = xmax

dir=-2 to apply at y = ymin

dir= 2 to apply at y = ymax

dir=-3 to apply at z = zmin

dir= 3 to apply at z = zmax

Prototypes for each of the functions described for the old interface are included in the header file
Boundary.h. Please add

uses include header: Boundary.h

to your thorn’s interface.ccl to use this header file in your C/C++ source files.

4 Scalar Boundary Condition

A scalar boundary condition means that the value of the given field or fields at the boundary is set
to a given scalar value, for example zero. The scalar boundary condition is registered under the name
“Scalar”.

4.1 Additional arguments

A table passed to the scalar boundary condition may contain the following additional arguments:
key variable type description default value
SCALAR CCTK REAL the scalar value 0.0
BOUNDARY WIDTH CCTK INT array stencil width for each face n/a

7



4.2 Old interface

Calling from C:

All Coordinate Directions:

int ierr = BndScalarVN(cGH *cctkGH, int *stencil_size,
CCTK_REAL var0, char *variable_name)

int ierr = BndScalarGN(cGH *cctkGH, int *stencil_size,
CCTK_REAL var0, char *group_name)

int ierr = BndScalarVI(cGH *cctkGH, int *stencil_size,
CCTK_REAL var0, int group_index)

int ierr = BndScalarGI(cGH *cctkGH, int *stencil_size,
CCTK_REAL var0, int variable_index)

Individual Coordinate Directions:

int ierr = BndScalarDirVN(cGH *cctkGH, int stencil, int dir,
CCTK_REAL var0, char *variable_name)

int ierr = BndScalarDirGN(cGH *cctkGH, int stencil, int dir,
CCTK_REAL var0, char *group_name)

int ierr = BndScalarDirVI(cGH *cctkGH, int stencil, int dir,
CCTK_REAL var0, int group_index)

int ierr = BndScalarDirGI(cGH *cctkGH, int stencil, int dir,
CCTK_REAL var0, int variable_index)

Calling from Fortran:

All Coordinate Directions:

call BndScalarVN(ierr, cctkGH, stencil_size, var0, variable_name)
call BndScalarGN(ierr, cctkGH, stencil_size, var0, group_name)
call BndScalarVI(ierr, cctkGH, stencil_size, var0, variable_index)
call BndScalarGI(ierr, cctkGH, stencil_size, var0, group_index)

Individual Coordinate Directions:

call BndScalarDirVN(ierr, cctkGH, stencil, dir, var0, variable_name)
call BndScalarDirGN(ierr, cctkGH, stencil, dir, var0, group_name)
call BndScalarDirVI(ierr, cctkGH, stencil, dir, var0, variable_index)
call BndScalarDirGI(ierr, cctkGH, stencil, dir, var0, group_index)

where

integer ierr
CCTK POINTER cctkGH

8



integer dir
integer stencil
integer stencil size(dim)
CCTK REAL var0
character*(*) variable name
character*(*) group name
integer variable index
integer group index

Arguments

ierr Return value, negative value indicates the boundary condition was not successfully applied
cctkGH Grid hierarchy pointer
var0 Scalar value to apply (For a complex grid function, this is the real part,

the imaginary part is set to zero.)
dir Coordinate direction in which to apply boundary condition
stencil size Array with dimension of the grid function, containing the stencil width
variable name Name of the variable
group name Name of the group
variable index Variable index
group index Group index

5 Flat Boundary Condition

A flat boundary condition means that the value of the given field or fields at the boundary is copied from
the value one grid point in, in any direction. For example, for a stencil width of one, the boundary value
of phi phi(nx,j,k), on the positive x-boundary will be copied from phi(nx-1,j,k). The flat boundary
condition is registered under the name “Flat”.

5.1 Additional arguments

A table passed to the flat boundary condition may contain the following additional arguments:
key variable type description default value
BOUNDARY WIDTH CCTK INT array stencil width for each face n/a

5.2 Old interface

Calling from C:

All Coordinate Directions:

int ierr = BndFlatVN(cGH *cctkGH, int *stencil_size, char *variable_name)
int ierr = BndFlatGN(cGH *cctkGH, int *stencil_size, char *group_name)
int ierr = BndFlatVI(cGH *cctkGH, int *stencil_size, int variable_index)
int ierr = BndFlatGI(cGH *cctkGH, int *stencil_size, int group_index)

9



Individual Coordinate Directions:

int ierr = BndFlatDirVN(cGH *cctkGH, int stencil, int dir, char *variable_name)
int ierr = BndFlatDirGN(cGH *cctkGH, int stencil, int dir, char *group_name)
int ierr = BndFlatDirVI(cGH *cctkGH, int stencil, int dir, int variable_index)
int ierr = BndFlatDirGI(cGH *cctkGH, int stencil, int dir, int group_index)

Calling from Fortran:

All Coordinate Directions:

call BndFlatVN(ierr, cctkGH, stencil_array, variable_name)
call BndFlatGN(ierr, cctkGH, stencil_array, group_name)
call BndFlatVI(ierr, cctkGH, stencil_array, variable_index)
call BndFlatGI(ierr, cctkGH, stencil_array, group_index)

Individual Coordinate Directions:

call BndFlatDirVN(ierr, cctkGH, stencil, dir, variable_name)
call BndFlatDirGN(ierr, cctkGH, stencil, dir, group_name)
call BndFlatDirVI(ierr, cctkGH, stencil, dir, variable_index)
call BndFlatDirGI(ierr, cctkGH, stencil, dir, group_index)

where

integer ierr
CCTK POINTER cctkGH
integer dir
integer stencil
integer stencil array(dim)
character*(*) variable name
character*(*) group name
integer variable index
integer group index

Arguments

ierr Return value, negative value indicates the boundary condition was not successfully applied
cctkGH Grid hierarchy pointer
dir Coordinate direction in which to apply boundary condition
stencil size Array with dimension of the grid function, containing the stencil width
variable name Name of the variable
group name Name of the group
variable index Variable index
group index Group index

10



6 Radiation Boundary Condition

This is a two level scheme. Grid functions are given for the current time level (to which the BC is applied)
as well as grid functions from a past timelevel which are needed for constructing the boundary condition.
The grid function of the past time level needs to have the same geometry. Currently radiative boundary
conditions can only be applied with a stencil width of one in each direction.

The radiative boundary condition that is implemented is

f = f0 +
u(r − vt)

r
+
h(r + vt)

r
(1)

That is, outgoing radial waves with a 1/r fall off, and the correct asymptotic value f0 are assumed,
including the possibility of incoming waves (these incoming waves should be modeled somehow).

Condition 1 above leads to the differential equation:

xi

r

∂f

∂t
+ v

∂f

∂xi
+
vxi

r2
(f − f0) = H

vxi

r2
(2)

where xi is the normal direction to the given boundaries, and H = 2dh(s)/ds.

At a given boundary only the derivatives in the normal direction are considered. Notice that u(r − vt)
has disappeared, but we still do not know the value of H.

To get H we do the following: The expression is evaluated one point in from the boundary and solved
for H there. Now we need a way of extrapolating H to the boundary. For this, assume that H falls off
as a power law:

H =
k

rn
which gives diH = −nH

r
(3)

The value of n is defined by the parameter radpower. If this parameter is negative, H is forced to be
zero (this corresponds to pure outgoing waves and is the default).

The observed behavior is the following: Using H = 0 is very stable, but has a very bad initial transient.
Taking n to be 0 or positive improves the initial behavior considerably, but introduces a drift that can
kill an evolution at very late times. Empirically, the best value found so far is n = 2, for which the initial
behavior is very nice, and the late time drift is quite small.

Another problem with this condition is that it does not use the physical characteristic speed, but rather
it assumes a wave speed of v, so the boundaries should be out in the region where the characteristic speed
is constant. Notice that this speed does not have to be 1.

The radiation boundary condition is registered under the name “Radiation”.

6.1 Additional arguments

A table passed to the radiative boundary condition may contain the following additional arguments:
key variable type description default value
LIMIT CCTK REAL f0 0.0
PREVIOUS TIME LEVEL CCTK INT or CCTK STRING GV which holds the Cactus previous time level

previous time level
SPEED CCTK REAL wave speed v 1.0
BOUNDARY WIDTH CCTK INT array stencil width for each face n/a

11



The default behavior is to use the Cactus previous time level, as defined in the interface.ccl file, for the
grid variable requested for the radiative boundary condition. The “PREVIOUS TIME LEVEL” key is
provided for backward compatibility only, and will be deprecated in the future. The corresponding value
may be either a CCTK INT, which will be interpreted as the index of a grid variable holding the previous
time level, or a CCTK STRING, interpreted as holding the name. Note that this will not work when selecting
an entire variable group (with more than one member) with one call to Boundary SelectGroupForBC*,
as each member will have a separate previous time level, and thus require a separate table. Please make
your life easier by using Cactus time levels. . .

6.2 Old interface

Calling from C:

All Coordinate Directions:

int ierr = BndRadiativeVN(cGH *cctkGH, int *stencil_size,
CCTK_REAL limit, CCTK_REAL speed,
char *variable_name, char *variable_name_past)

int ierr = BndRadiativeGN(cGH *cctkGH, int *stencil_size,
CCTK_REAL limit, CCTK_REAL speed,
char *group_name, char *group_name_past)

int ierr = BndRadiativeVI(cGH *cctkGH, int *stencil_size,
CCTK_REAL limit, CCTK_REAL speed,
int variable_index, int variable_index_past)

int ierr = BndRadiativeGI(cGH *cctkGH, int *stencil_size,
CCTK_REAL limit, CCTK_REAL speed,
int group_index, int group_index_past)

Individual Coordinate Directions:

int ierr = BndRadiativeDirVN(cGH *cctkGH, int stencil, int dir,
CCTK_REAL limit, CCTK_REAL speed,
char *variable_name, char *variable_name_past)

int ierr = BndRadiativeDirGN(cGH *cctkGH, int *stencil, int dir,
CCTK_REAL limit, CCTK_REAL speed,
char *group_name, char *group_name_past)

int ierr = BndRadiativeDirVI(cGH *cctkGH, int *stencil, int dir,
CCTK_REAL limit, CCTK_REAL speed,
int variable_index, int variable_index_past)

int ierr = BndRadiativeDirGI(cGH *cctkGH, int *stencil, int dir,
CCTK_REAL limit, CCTK_REAL speed,
int group_index, int group_index_past)

Calling from Fortran:

All Coordinate Directions:

call BndRadiativeVN(ierr, cctkGH, stencil_size, speed, limit,

12



variable_name, variable_name_past)
call BndRadiativeGN(ierr, cctkGH, stencil_size, speed, limit,

group_name, group_name_past)
call BndRadiativeVI(ierr, cctkGH, stencil_size, speed, limit,

variable_index, variable_index_past)
call BndRadiativeGI(ierr, cctkGH, stencil_size, speed, limit,

group_index, group_index_past)

Individual Coordinate Directions:

call BndRadiativeDirVN(ierr, cctkGH, stencil, dir, speed, limit,
variable_name, variable_name_past)

call BndRadiativeDirGN(ierr, cctkGH, stencil, dir, speed, limit,
group_name, group_name_past)

call BndRadiativeDirVI(ierr, cctkGH, stencil, dir, speed, limit,
variable_index, variable_index_past)

call BndRadiativeDirGI(ierr, cctkGH, stencil, dir, speed, limit,
group_index, group_index_past)

where

integer ierr
CCTK POINTER cctkGH
integer dir
integer stencil
integer stencil array(dim)
character*(*) variable name
character*(*) group name
integer variable index
integer group index
CCTK REAL speed
CCTK REAL limit

Arguments

ierr return value, operation failed when return value negative
cctkGH grid hierarchy pointer
stencil size(dim) array of size dim (dimension of the grid function).

To how many points from the outer boundary to apply the boundary condition.
speed wave speed used for boundary condition (v)
limit asymptotic value of function at infinity (f0)
variable name the name of the grid function to which the boundary condition will be applied
variable name past The name of the grid function containing the values on the past time level,

needed to calculate the boundary condition.
group name the name of the group to which the boundary condition will be applied
group name past is the name of the group containing the grid functions on the past time level,

needed to calculate the boundary condition.
variable index the index of the grid function to which the boundary condition will be applied

13



variable index past the index of the grid function containing the values on the past time level,
needed to calculate the boundary condition.

group index the index of the group to which the boundary condition will be applied
group index past the index of the group containing the values on the past time level,

needed to calculate the boundary condition.

7 Copy Boundary Condition

This is a two level scheme. Copy the boundary values from a different grid function, for example the
previous timelevel. The two grid functions (or groups of grid functions) must have the same geometry.
The copy boundary condition is registered under the name “Copy”.

7.1 Additional arguments

The “COPY FROM” argument for the copy boundary condition is required, so a valid table handle is
required as well. The keys read are
key variable type description default value
COPY FROM CCTK INT or CCTK STRING GV to copy from no default
BOUNDARY WIDTH CCTK INT array stencil width for each face n/a

(The BOUNDARY WIDTH table entry is only necessary if the boundary width parameter is negative.)

7.2 Old interface

Calling from C:

int ierr = BndCopyVN(cGH *cctkGH, int *stencil_size,
char *variable_name_to, char *variable_name_from)

int ierr = BndCopyGN(cGH *cctkGH, int *stencil_size,
char *group_name_to, char *group_name_from)

int ierr = BndCopyVI(cGH *cctkGH, int *stencil_size,
int variable_index_to, int variable_index_from)

int ierr = BndCopyGI(cGH *cctkGH, int *stencil_size,
int group_index_to, int group_index_from)

Calling from Fortran:

call BndCopyVN(ierr, cctkGH, stencil_size, variable_name_to,
variable_name_from)

call BndCopyVN(ierr, cctkGH, stencil_size, group_name_to,
group_name_from)

call BndCopyVN(ierr, cctkGH, stencil_size, variable_index_to,
variable_index_from)

call BndCopyVN(ierr, cctkGH, stencil_size, group_index_to,

14



group_index_from)

where

integer ierr return value, operation failed when return value negative
CCTK POINTER cctkGH grid hierarchy pointer
integer stencil size(dim) array of size dim (dimension of the grid function). To how many points

from the outer boundary to apply the boundary condition.
character*(*) variable name to the name of the grid function to which the boundary condition

will be applied by copying to.
character*(*) variable name from the name of the grid function containing the values to copy from.
character*(*) group name to the name of the group to which the boundary condition

will be applied by copying to.
character*(*) group name from the name of the group containing the the values to copy from.
integer variable index to the index of the grid function to which the boundary condition

will be applied by copying to.
integer variable index from the index of the grid function containing the the values to copy from.
integer group index to the index of the group to which the boundary condition

will be applied by copying to.
integer group index from the index of the group containing the the values to copy from.

8 Robin Boundary Condition

This boundary condition has not yet been implemented in individual coordinate directions. The Robin
boundary condition is:

f(r) = f0 +
k

rn
(4)

with k a constant, n the decay rate and f0 the value at infinity. This implies:

∂f

∂r
= −n k

rn+1
(5)

or
∂f

∂r
= −n (f − f0)

r
(6)

Considering now a given Cartesian direction x we get:

∂f

∂x
=
∂f

∂r

∂r

∂x
=
x

r

∂f

∂r
(7)

which implies
∂f

∂x
= −n(f − f0)

x

r2
(8)

The equations are then finite differenced around the grid point i+ 1/2:

fi+1 − fi = −n∆x
(

1
2

(fi+1 + fi)− f0

)
xi+1/2

r2i+1/2

(9)

or
fi+1 − fi = −n∆x((fi+1 + fi)− 2f0)

xi+1 + xi

(ri+1 + ri)2
(10)

And this is then solved either for fi or fi+1 depending on which side are we looking at.

The Robin boundary condition is registered under the name “Robin”.

15



8.1 Additional arguments

A table passed to the Robin boundary condition may contain the following additional arguments:
key variable type description default value
FINF CCTK REAL f0 0
DECAY POWER CCTK INT n 1
BOUNDARY WIDTH CCTK INT array stencil width for each face n/a

8.2 Old interface

Calling from C:

All Coordinate Directions:

int ierr = BndRobinVN(cGH *cctkGH, int *stencil_size,
CCTK_REAL finf, int npow, char *variable_name)

int ierr = BndScalarGN(cGH *cctkGH, int *stencil_size,
CCTK_REAL finf, int npow, char *group_name)

int ierr = BndScalarVI(cGH *cctkGH, int *stencil_size,
CCTK_REAL finf, int npow, int group_index)

int ierr = BndScalarGI(cGH *cctkGH, int *stencil_size,
CCTK_REAL finf, int npow, int variable_index)

Calling from Fortran:

All Coordinate Directions:

call BndRobinVN(ierr, cctkGH, stencil_size, finf, npow, variable_name)
call BndRobinGN(ierr, cctkGH, stencil_size, finf, npow, group_name)
call BndRobinVI(ierr, cctkGH, stencil_size, finf, npow, variable_index)
call BndRobinGI(ierr, cctkGH, stencil_size, finf, npow, group_index)

where

integer ierr
CCTK POINTER cctkGH
integer stencil size(dim)
CCTK REAL finf
integer npow
character*(*) variable name
character*(*) group name
integer variable index
integer group index

16



Arguments

ierr Return value, negative value indicates the boundary condition was not successfully applied
cctkGH Grid hierarchy pointer
finf Scalar value at infinity
npow Decay rate (n in discussion above)
stencil size Array with dimension of the grid function, containing the stencil width to apply the boundary at
variable name Name of the variable
group name Name of the group
variable index Variable index
group index Group index

9 Static Boundary Condition

The static boundary condition ensures that the boundary values do not evolve in time, by copying their
values from previous timelevels. The static boundary condition is registered under the name “Static”.

9.1 Additional arguments

A table passed to the static boundary condition may contain the following additional arguments:
key variable type description default value
BOUNDARY WIDTH CCTK INT array stencil width for each face n/a

9.2 Old interface

Calling from C:

All Coordinate Directions:

int ierr = BndStaticVN(cGH *cctkGH, int *stencil_size, char *variable_name)
int ierr = BndStaticGN(cGH *cctkGH, int *stencil_size, char *group_name)
int ierr = BndStaticVI(cGH *cctkGH, int *stencil_size, int variable_index)
int ierr = BndStaticGI(cGH *cctkGH, int *stencil_size, int group_index)

Individual Coordinate Directions:

int ierr = BndStaticDirVN(cGH *cctkGH, int stencil, int dir, char *variable_name)
int ierr = BndStaticDirGN(cGH *cctkGH, int stencil, int dir, char *group_name)
int ierr = BndStaticDirVI(cGH *cctkGH, int stencil, int dir, int variable_index)
int ierr = BndStaticDirGI(cGH *cctkGH, int stencil, int dir, int group_index)

Calling from Fortran:

All Coordinate Directions:

17



call BndStaticVN(ierr, cctkGH, stencil_array, variable_name)
call BndStaticGN(ierr, cctkGH, stencil_array, group_name)
call BndStaticVI(ierr, cctkGH, stencil_array, variable_index)
call BndStaticGI(ierr, cctkGH, stencil_array, group_index)

Individual Coordinate Directions:

call BndStaticDirVN(ierr, cctkGH, stencil, dir, variable_name)
call BndStaticDirGN(ierr, cctkGH, stencil, dir, group_name)
call BndStaticDirVI(ierr, cctkGH, stencil, dir, variable_index)
call BndStaticDirGI(ierr, cctkGH, stencil, dir, group_index)

where

integer ierr
CCTK POINTER cctkGH
integer dir
integer stencil
integer stencil array(dim)
character*(*) variable name
character*(*) group name
integer variable index
integer group index

Arguments

ierr Return value, negative value indicates the boundary condition was not successfully applied
cctkGH Grid hierarchy pointer
dir Coordinate direction in which to apply boundary condition
stencil size Array with dimension of the grid function, containing the stencil width to apply the boundary at
variable name Name of the variable
group name Name of the group
variable index Variable index
group index Group index

10 None Boundary Condition

The “None” boundary condition does just that, nothing. It is provided to inform the boundary imple-
mentation of grid variables which should have symmetry boundary conditions applied to them, but do
not have their physical boundary conditions applied using a properly registered function.

18



10.1 Additional arguments

The none boundary condition will ignore all arguments passed to it. (Notably, when registering vari-
ables/groups for this boundary condition, the boundary_width and table_handle arguments are unused,
and may be passed as dummy values.)

10.2 Old interface

There is no old interface to this boundary condition.

11 Appendix: Symmetry and non-local boundary conditions

An additional aliased function is provided to allow one to retrieve a list of grid variables which are selected
for any particular boundary condition, or the entire list of selected grid variables (regardless of selected
boundary condition). This is needed to write a thorn which provides a symmetry boundary condition, or
a non-local boundary condition, as either of these need to schedule a routine in the BoundaryConditions
schedule group to execute their condition on the list of selected variables2. (A symmetry boundary
condition will need the entire list of selected variables, while the non-local physical condition will only
need the list of variables which request that particular boundary condition.)

int Boundary_SelectedGVs(CCTK_POINTER cctkGH,
CCTK_INT array_size,
CCTK_POINTER var_indices,
CCTK_POINTER faces,
CCTK_POINTER boundary_widths,
CCTK_POINTER table_handles,
CCTK_STRING bc_name)

cctkGH pointer to the grid hierarchy
array size size of arrays pointed to by the next three arguments
var indices array of integers into which the selected variables’ grid variable indices will be placed
faces array of integers into which the faces specification for each selected grid variable will be placed
boundary widths array of integers which holds the boundary width parameter for each selected GV
table handles array of integers into which the table handle for each selected grid variable will be placed
bc name name of boundary condition

This function places a list of up to array size grid variable indices, sorted as described in section 2.1, into
the array var indices. The corresponding (up to array size) faces specifications, boundary widths, and
table handles are placed into the arrays faces, boundary widths, and table handles, respectively. (If
the list contains n <array size elements, then only n elements are placed into the arrays var indices,
faces, boundary widths, and table handles.) To retrieve a list of all selected grid variables (for all
boundary conditions), pass a null pointer for bc name. The return value is the number elements of the
requested list, so Boundary SelectedGVs can be called first with var indices equal to zero to determine
how much memory to allocate for the arrays var indices, faces, boundary widths, and table handles.

2The consistency of the symmetry conditions scheduled in BoundaryConditions will be treated in an upcoming “Sym-
metry” implementation

19



A non-local boundary condition must register a null pointer as its providing function in
Boundary RegisterPhysicalBC, so that its name exists in the database of available boundary conditions,
yet no extra routine is called when Boundary ApplyPhysicalBCs is executed.

20


	Introduction
	Local and non-local boundary conditions
	Symmetry and physical boundary conditions

	The generic boundary interface
	Boundary condition registration
	Boundary condition selection
	Schedule groups
	Faces

	Provided boundary conditions
	General Comments
	Old interface


	Scalar Boundary Condition
	Additional arguments
	Old interface

	Flat Boundary Condition
	Additional arguments
	Old interface

	Radiation Boundary Condition
	Additional arguments
	Old interface

	Copy Boundary Condition
	Additional arguments
	Old interface

	Robin Boundary Condition
	Additional arguments
	Old interface

	Static Boundary Condition
	Additional arguments
	Old interface

	None Boundary Condition
	Additional arguments
	Old interface

	Appendix: Symmetry and non-local boundary conditions

