
CartGrid3D

Gabrielle Allen
Gerd Lanfermann

Joan Masso
Jonathan Thornburg

Date: 2003/08/22 20:56:08

Abstract

CartGrid3D allows you to set up coordinates on a 3D Cartesian grid in a flexible manner. You
can choose different grid domains (eg octant) to allow you to exploit any symmetry in your problem.
CartGrid3D also provides routines for registering symmetries of grid functions and applying symmetry
conditions across the coordinate axes.

1 Specifying the Grid Symmetry

You specify the grid symmetry (or lack thereof) with the grid::domain parameter:

grid::domain = "full"
There are no symmetries.

grid::domain = "bitant"
The grid includes only the z ≥ 0 half-space (plus symmetry zones); there is a reflection symmetry
across the z = 0 plane.

grid::domain = "quadrant"
The grid includes only the {x ≥ 0, y ≥ 0} quadrant (plus symmetry zones); there is a reflection
symmetry across both the x = 0 plane and the y = 0 plane.

grid::domain = "octant"
The grid includes only the {x ≥ 0, y ≥ 0, z ≥ 0} octant (plus symmetry zones); there is a reflection
symmetry across each of the x = 0 plane, the y = 0 plane, and the z = 0 plane.

In each case except grid::domain = "full", symmetry zones are introduced just on the “other
side” of each symmetry grid boundary. Each symmetry zone has a width (perpendicular to the bound-
ary) of driver::ghost_size extra grid points. For centered 2nd order finite differencing, a width of
driver::ghost_size = 1 should be sufficient, but for (centered) 4th order finite differencing, or for
upwinded 2nd order, a width of driver::ghost_size = 2 is needed. Making driver::ghost_size too
large is fairly harmless (it just slightly reduces performance), but making it too small will almost certainly
result in horribly wrong finite differencing near the symmetry boundaries, and may also result in core
dumps from out-of-range array accessing.

Note that the symmetry zones must be explicitly included in driver::global_nx, driver::global_ny,
and driver::global_nz, but should not be included in any of the grid::type = "byrange" parameters
grid::xmin, grid::xmax, grid::ymin, grid::ymax, grid::zmin, grid::zmax, grid::xyzmin, and/or
grid::xyzmax described in the next section.

Note also that driver::global_nx, driver::global_ny, and driver::global_nz do not include
any ghost zones introduced for multiprocessor synchronization. (For more information on ghost zones,
see the section “Ghost Size” in the “Cactus Variables” chapter of the Cactus Users’ Guide.)

1

2 Specifying the Grid Size, Range, and Spacing

CartGrid3D provides several different methods for setting up the integer grid size (eg 128), floating-point
grid spacing (eg 0.1), and floating-point grid range (eg 12.8).1 You specify which method to use, with
the grid::type parameter:

grid::type = "byrange"
You specify the x, y, and z grid ranges, either with separate grid::xmin, grid::xmax, grid::ymin,
grid::ymax, grid::zmin, and grid::zmax parameters, or with the grid::xyzmin and grid::xyzmax
parameters. The grid spacings are then determined automagically from this information and the
driver::global_nx, driver::global_ny, and driver::global_nz grid-size parameters. You
should also choose the grid::domain parameter consistent with all these other parameters. (It’s
not clear whether or not the code ever explicitly checks this.)

grid::type = "box"
This is a special case of grid::type = "byrange" with the grid ranges hard-wired to grid::xyzmin = -0.5
and grid::xyzmax = +0.5.

grid::type = "byspacing"
You specify the x, y, and z grid spacings, either with separate grid::dx, grid::dy, and grid::dz
parameters, or with the grid::dxyz parameter. You also specify the grid symmetry with the
grid::domain parameter. The x, y, and z grid ranges are then determined automagically from this
information and the driver::global_nx, driver::global_ny, and driver::global_nz grid-size
parameters: Each coordinate’s range is chosen to be either symmetric about zero, or to extend from
0 up to a maximum value.

There are also a number of optional parameters which can be used to specify whether or not it’s ok
to have a grid point with an x, y, and/or z coordinate exactly equal to 0:

grid::no originx, grid::no originy, grid::no originz, grid::no origin
These parameters are all deprecated — don’t use them!

grid::avoid originx
This is a Boolean parameter; if set to true (grid::avoid_originx = "true" or grid::avoid_originx = "yes"
or grid::avoid_originx = 1) then the grid will be “half-centered” across x = 0, ie there will be
grid points at . . . , x = − 3

2∆x, x = − 1
2∆x, x = + 1

2∆x, x = + 3
2∆x, . . . , but not at x = 0.

grid::avoid originy
Same thing for y.

grid::avoid originz
Same thing for z.

grid::avoid origin
Same thing for all 3 axes x and y and z, ie no grid point will have x = 0 or y = 0 or z = 0.

3 An Example

Here is an example of setting up a grid using the PUGH unigrid driver. The relevant parts of the parameter
file are as follows:

PUGH
driver::ghost_size = 2
driver::global_nx = 61
driver::global_ny = 61
driver::global_nz = 33

1If you’re AMR-ing, this all refers to the coarsest or base grid.

2

CartGrid3D
grid::avoid_origin = "no"
grid::domain = "bitant"
grid::type = "byrange"
grid::xmin = -3.0
grid::xmax = +3.0
grid::ymin = -3.0
grid::ymax = +3.0
grid::zmin = 0.0
grid::zmax = +3.0

The resulting Cactus output (describing the grid) is as follows:

INFO (CartGrid3D): Grid Spacings:
INFO (CartGrid3D): dx=>1.0000000e-01 dy=>1.0000000e-01 dz=>1.0000000e-01
INFO (CartGrid3D): Computational Coordinates:
INFO (CartGrid3D): x=>[-3.000, 3.000] y=>[-3.000, 3.000] z=>[-0.200, 3.000]
INFO (CartGrid3D): Indices of Physical Coordinates:
INFO (CartGrid3D): x=>[0,60] y=>[0,60] z=>[2,32]
INFO (PUGH): Single processor evolution
INFO (PUGH): 3-dimensional grid functions
INFO (PUGH): Size: 61 61 33

Since there’s no symmetry in the x and y directions, the grid is set up just as specified, with floating-
point coordinates running from −3.0 to 3.0 inclusive, and 61 grid points with integer grid indices [0, 60]
(C) or [1, 61] (Fortran).

However, in the z direction there’s a reflection symmetry across the z = 0 plane, so the specified range
of the grid, z ∈ [0.0, 3.0], is automagically widened to include the symmetry zone of driver::ghost_size = 2
grid points. The grid thus actually includes the range of floating-point coordinates z ∈ [−0.2, 3.0]. The
original specification of 33 grid points is left alone, however, so the grid points have integer array indices
[0, 32] (C) or [1, 33] (Fortran). The “physical” (ie non-symmetry-zone) part of the grid is precisely the
originally-specified range, z ∈ [0.0, 3.0], and has the integer array indices [2, 32] (C) or [3, 33] (Fortran).

4 Coordinates

CartGrid3D defines (registers) four coordinate systems: cart3d, cart2d, cart1d, and spher3d.
The Cartesian coordinates supplied by this thorn are grid functions with the standard names x, y,

and z. To use these coordinates you need to inherit from grid, ie you need to have an

inherits: grid

line in your interface.ccl file. In addition a grid function r is provided, containing the radial coordinate
from the origin where

r =
√
x2 + y2 + z2

CartGrid3D registers the lower and upper range of each coordinate with the flesh.

5 Symmetries for Grid Functions

If your problem and initial data allow it, CartGrid3D allows you to enforce even or odd parity for any
grid function at (across) each coordinate axis. For a function φ(x, y, z), even parity symmetry on the
x-axis means

φ(−x, y, z) = φ(x, y, z)

while odd parity symmetry means
φ(−x, y, z) = −φ(x, y, z)

Note that the symmetries will only be enforced if a symmetry domain is chosen (that is, if grid::domain
is set to something other than grid::domain = "full".

3

5.1 Registering Symmetry Behaviour

Each grid function can register how it behaves under a coordinate change using function calls in CartGrid3D.
These symmetry properties can then be used by other thorns, for example CactusBase/Boundary uses
them to enforce symmetry boundary conditions across coordinate axes. Symmetries should obviously be
registered before they are used, but since they can be different for different grids, they must be registered
after the CCTK STARTUP timebin. The usual place to register symmetries is in the CCTK BASEGRID timebin.

For example, to register the symmetries of the xy component of the metric tensor from C, you first
need to get access to the include file by putting the line

uses include: Symmetry.h

in your interface.ccl file. Then in your thorn you can write (C)

#include "Symmetry.h"
static int one=1;
int sym[3];
sym[0] = -one;
sym[1] = -one;
sym[2] = one;
SetCartSymVN(cctkGH, sym,"ADMBase::gxy");

5.2 Calling Symmetry Boundary Conditions

CartGrid3D provides the following two routines to apply symmetry boundary conditions to a variable
group:

CartSymGI(cGH *GH, int *gi)
CartSymGN(cGH *GH, const char *gn)

and for a specific variable it provides:

CartSymVI(cGH *GH, int *vi)
CartSymVN(cGH *GH, const char *gn)

A group or variable can be specified by its index value or name (use the ’I’ or ’N’ version respectively).
The Fortran versions of these functions take an additional first argument, which is an integer which will
hold the return value.

4

	Specifying the Grid Symmetry
	Specifying the Grid Size, Range, and Spacing
	An Example
	Coordinates
	Symmetries for Grid Functions
	Registering Symmetry Behaviour
	Calling Symmetry Boundary Conditions

