
CoordGauge

Tom Goodale

Date: 2004/06/11 13:13:24

Abstract

This thorn provides an infrastructure for dynamic gauge selection. However, at present (summer
2004) many thorns don’t use this infrastructure.

1 The Infrastructure

The CoordGauge implementation schedules five groups:

CoordGauge
LapseSelect IN CoordGauge BEFORE PickCoordGauge
LapseApply IN CoordGauge AFTER PickCoordGauge
ShiftSelect IN CoordGauge BEFORE PickCoordGauge
ShiftApply IN CoordGauge AFTER PickCoordGauge

and one function

PickCoordGauge IN CoordGauge

and has two public grid scalars

selected_lapse
selected_shift

and two string parameters

lapse_list
shift_list

It also provides four aliased functions

int CoordGauge_RegisterLapse("lapse-name")
int CoordGauge_RegisterShift("shift-name")
CoordGauge_Lapse("lapse-name")
CoordGauge_Shift("shift-name")

(If someone can think of better names, please say so 8-)
Then each thorn which wants to apply a coordinate gauge condition registers itself, receiving a unique

integer as an id, and schedules a selection routine and an application routine in the appropriate schedule
groups.

The selection routine decides if this gauge condition should be applied at this time, and calls the
CoordGauge_Lapse/Shift aliased function. (It should check that it is actually in the appropriate pa-
rameter as a minimum.)

The PickCoordGauge function traverses the list of lapses/shifts and selects the first one in the list
which has called the CoordGauge_Lapse/Shift aliased function and sets the appropriate grid scalar to
the id of this one.

1



The application routine checks to see if the grid scalar is set to its id, and if so, applies the gauge
condition.

Evolution thorns could schedule CoordGauge at the appropriate point or points in their schedule.
An advantage of this scheme over the current one is that it provides the selection routines with a full

set of variables from which to decide whether they should apply a guage or not. So it becomes very easy
to choose to switch off maximal if the lapse has collapsed within a certain volume, etc.

This is simpler than the previous scheme as there is no arbitrary ’bid’ floating around. It also allows
us to keep the logic of the final selection in one place, thus allowing people to override this logic if they
need to.

2 Current Status

As of summer 2004, many thorns don’t use the above mechanism, instead they directly extend
ADMBase::lapse_evolution_method and/or ADMBase::shift_evolution_method. That is, the thorn
implementing a coordinate condition thorn says in its param.ccl:

EXTENDS KEYWORD lapse_evolution_method "Which lapse condition to use"
{
"super-duper" :: "my super-duper new lapse condition"
} ""

(and/or the equivalent for shift_evolution_method).
The thorn then schedules a routine in some suitable schedule bin/group (probably CCTK_PRESTEP or

MOL_PRESTEP) to check ADMBase::lapse_evolution_method and/or ADMBase::shift_evolution_method,
and if they’re equal to the appropriate string, it does the coordinate condition.

2


	The Infrastructure
	Current Status

