EIIPETSc

Paul Walker, Gerd Lanfermann

Date: 2002/06,/04 12:51:09

Abstract

E11PETSc provides 3D elliptic solvers for the various classes of elliptic problems defined in E11Base.
E11PETSc using the “Portable, Extendable Toolkit for Scientific computation” (PETSc) by Argonne
National Lab. PETSc is a suite of routines and data structures that can be employed for solving
partial differential equations in parallel. E11PETSc t is called by the interfaces provided in E11Base.

1 Purpose

This thorns provides sophisticated solvers based on PETSc libraries. It supports all the interfaces defined
in El1Base. At this point is not optimized for performance. Expect improvements as we develop the
elliptic solver arrangement.

This thorn provides

1. No Pizza
2. No Wine

3. peace

2 Technical Details

This thorn supports three elliptic problem classes: LinFlat for a standard 3D cartesian Laplace operator,
using the standard 7-point computational molecule. LinMetric for a Laplace operator derived from the
metric, using 19-point stencil. LinConfMetric for a Laplace operator derived from the metric and a
conformal factor, using a 19-point stencil. The code of the solvers differs for the classes and is explained
in the following section.

2.1 Imstalling PETSc

PETSc needs to be installed on the machine and the environment variables PETSC_ARCH and PETSC_DIR

have to be set to compile EL11PETSc. PETSc can obtained for free at http://www-fp.mcs.anl.gov/petsc/.
Cactus needs to be compiled with MPI. While PETSc can be compiled for single processor mode (with-

out MPT), Cactus has only been tested and used with the parallel version of PETSc requiring MPI. For

detailed information in how to install PETSc refer to the documentation.

2.2 LinFlat

For this class we employ the the 7-point stencil based on only. These values are constant at each gridpoint.

2.3 LinMetric

For this class the standard 19-point stencil is initialized, taken the underlying metric into account. The
values for the stencil function differ at each gridpoints.

2.4 LinConfMetric

For this class the standard 19-point stencil is initialized, taken the underlying metric and its conformal
factor into account. The values for the stencil function differ at each gridpoints.

2.5 Interfacing PETSc

The main task when interfacing PETSc consists of transferring data from the Cactus parallel data struc-
tures (gridfunctions) to the parallel structures provided by PETSc.

Here we explain the main steps, to be read with the code at hands.

1. The indices imin,imax ... are calculated and describe the starting/ending points in 3D local index
space: ghostzones are not included here.

2. A linear global index is calculated describing the starting/ending points in linear global index space.
Ghostzone are not included here.

3. A lookup gridfunction wsp is loaded identifying the 3D local index with the linear global index.
Values of zero indicate boundaries.

4. PETSc matrices/vectors are created specifying the linear size: global endpoint - global startpoint.

5. For the elliptic class LinFlat the stencil functions are initialized with the standard 7-point stencil,
the class LinMetric and LinConfMetric require a more sophisticated treatment described later.

6. Looping over the processor local grid points (in 3D local index space) the PETSc vectors and
coefficient matrix is loaded if no boundary is present (wsp[i,j,k] not equal zero.);

7. Starting the PETSc vector and matrix assembly, nested for performance as recommended by PETSc.

8. Creation of the elliptic solver context and setting of options, followed by the call to the PETSc
solver.

9. Upon completion of the solve, the PETSc solution has to transferred to the Cactus data structures.

3 Comments

The sizes of the arrays Mlinear for the coefficient matrix and Nsource are passed in the solver. A storage
flag is set if these variables are of a sized greater 1. In this case, the array can be accessed.

4 General remarks: PETSc within Cactus

4.1 PETSc in src code

Use PETSc as normal, Use the PUGH communicator if a routine needs a communictor. On first pass,
you need to make a call to PETScSetCommWorld() and Petsclnitialize() to set the PETSc communicator
and initialize PETSc.

This could be a seperate routine scheduled early in schedule.ccl at BASEGRID eg. Petsclnitialize()
requires the commandline parameters as input. It allows you to pass through the flags, etc. (I have
not ried this feature.) Initialize the PETSc communicator with the Cactus communicator. You end up
having code like this:

/* The pugh Extension handle */
pGH *pughGH;

/* Get the link to pugh Extension */
pughGH = (pGH*)GH->extensions[CCTK_GHExtensionHandle("PUGH")];

if (first_trip==0)
{

int argc;

char **argv;

/* Get the commandline arguments */
argc = CCTK_CommandLine (&argv) ;

/* Set the PETSc communicator to set of

PUGH and initialize PETSc */
ierr = PetscSetCommWorld (pughGH->PUGH_COMM_WORLD); CHKERRA(ierr);
PetscInitialize(&argc,&argv,NULL,NULL);

CCTK_INFO("PETSc initialized");

4.2 make.code.defn

You need to tell Cactus to look for the PETSc includes: In the file make.code.defn define the SRCS
(sources) as explained in the dcoumentation and add a lien for SUS_INC_DIR which lets Cactus look for
additional includes, eg.:

SYS_INC_DIRS += $(PETSC_DIR) $(PETSC_DIR)/include \
$ (PETSC_DIR) /bmake/$ (PETSC_ARCH)

4.3 make.configuration.defn

This file is not created by the when you use Cactus to create a new thorn by ”gmake newthorn”. For a tem-
plate PETSc configuration file, have a look in ./CactusElliptic/EIIPETSc/src/make.configuration.defn.

The first section checks if PETSC_DIR/PETSC_LIB are set. If they are not, the configuration process
will be interrupted (otherwise you have to wait to the end of the compilation to find out that your program
won’t link).

Second section specifies the standard PETSc libs. eg.:

PETSC_LIB_DIR
PETSC_LIBS

$ (PETSC_DIR)/1ib/1libg/$ (PETSC_ARCH)
petscts petscsnes petscsles petscdm

Third section adds platform dependent file, by checking PETSC_ARCH and assigning the appropriate
libs.

In the end the variables are assigned to the variables that Cactus make process is using (note the
incremental assignment ”+=")

LIBDIRS += $(PETSC_LIB_DIR) $(X_LIB_DIR)
LIBS += $(PETSC_LIBS) $(PLATFORM_LIBS) X11
EXTRAFLAGS += -I$(PETSC_DIR)/include

	Purpose
	Technical Details
	Installing PETSc
	LinFlat
	LinMetric
	LinConfMetric
	Interfacing PETSc

	Comments
	General remarks: PETSc within Cactus
	PETSc in src code
	make.code.defn
	make.configuration.defn

