IDScalarWave

Gabrielle Allen
Horst Beyer

Date: 2002/06/04 09:58:58

Abstract

Initial Data for the 3D Scalar Wave Equation

1 Purpose

This thorn provides different initial data for the 3D scalar wave equation.

2 Spherically Symmetric Solutions

The general spherically symmetric solution can be written

$$
\begin{equation*}
\Psi(r, t)=\frac{1}{r}(f(r+t)+g(r-t)) \tag{1}
\end{equation*}
$$

where the functions f and g can be freely chosen.
Making the additional requirement of time symmetry at $t=0$, forces

$$
\begin{equation*}
f(r)=g(r) \tag{2}
\end{equation*}
$$

Thus if the solution at $\mathrm{t}=0$ is given by $\phi(r)$, the general solution will be

$$
\begin{equation*}
\Psi(r, t)=\frac{1}{2 r}((r+t) \phi(r+t)+(r-t) \phi(r-t)) \tag{3}
\end{equation*}
$$

3 Gaussian

The gaussian solution is spherically symmetric about the origin of the Cartesian coordinate system, and is time symmetric. The initial profile is

$$
\begin{equation*}
\phi(r)=A \exp \left(-r^{2} / \sigma\right) \tag{4}
\end{equation*}
$$

with the solution at the origin being

$$
\begin{equation*}
\Psi(r=0, t)=\left(1-2 \frac{t^{2}}{\sigma}\right) \exp \left(-t^{2} / \sigma\right) \tag{5}
\end{equation*}
$$

The Gaussian solution is set with the parameters

- amplitude $=A$
- $\operatorname{sigma}=\sigma$

